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ABSTRACT: We present a numerical implementation of the quantum chemistry
density matrix renormalization group (DMRG) using the hybrid discrete variable
representation (DVR)/Gaussian basis set. The z-axis of real space is discretized by
a DVR basis set and each transversal plane is described by the eigenstates of the
transversal core Hamiltonian, represented in a set of primitive Gaussian basis
functions. Such a hybrid basis can reduce the computation of two-electron
repulsion integrals. One main advantage of using the local DVR basis sets over
finite-difference methods for real space discretization is that the kinetic energy
operator matrix elements can be computed exactly. This method is first applied to
a one-dimensional pseudo-hydrogen chain under screened Coulomb potential and
then to a realistic hydrogen chain, whereby the DMRG/DVR results are
comparable in accuracy to the full configuration interaction results.

1. INTRODUCTION
Electronic structure is the cornerstone of modern chemistry
and is now routinely performed for molecules and materials to
understand their physicochemical properties and spectrosco-
py.1,2 Most of the electronic structure codes employ Gaussian-
type orbitals as the atomic integrals can be analytically
computed. The two-electron integrals are fundamental
components required for any electronic structure computa-
tions,3 e.g., to construct the Fock matrix in the Hartree−Fock
(HF) method. The evaluation of electron repulsion integrals is
computationally demanding as it scales N4 with the size of the
basis set N. Real-space grids provide an alternative universal
basis set for electronic structure computations.4−11

The discrete variable representation (DVR) basis set using
both a finite number of basis functions and a set of grid points,
has been widely used in solving the molecular vibrational
eigenstates problems12−18 as it simplifies the computations of
both kinetic energy and potential energy operator matrix
elements. However, much less is explored to use DVR basis
sets for electronic structure computations, especially in
advanced multiconfigurational methods.7,19 The main difficulty
with DVR basis sets in electronic structure comes from the
Coulomb singularities, this occurs even for a single hydrogen
atom. Previous attempts employing DVR set in electronic
structure computations typically uses a soft Coulomb
potential.7,19

Here we present an implementation of the quantum
chemistry density matrix renormalization group (DMRG)
using a hybrid contracted Gaussian/DVR basis sets (sliced
basis). We avoid the Coulomb singularities by using DVR in

only one or two dimensions while using Gaussian basis
functions for the remaining axes. DMRG is a numerical
method developed to study quantum many-body systems,
particularly in one-dimensional systems. Originally introduced
by White,20 it has become one of the most powerful
computational methods in condensed matter physics and,
more recently, in quantum chemistry for calculating ground
state and low-lying excited states of molecules.21−23 DMRG
represents many-electron states using matrix product states,
composed of interconnected tensors with a restricted
entanglement. While conventionally the quantum chemistry
DMRG uses the canonical molecular orbitals as sites, using a
localized basis set as DMRG sites can enhance its performance
by reducing the entanglement.24 Specifically, the sliced basis
DMRG uses a real-space grid for z coordinate, while the
transversal plane uses Gaussian basis sets.24 The kinetic energy
operator is computed approximately by a finite-difference
method, which requires a dense uniform grid to have good
accuracy; see refs 25,26 for more recent developments of
DMRG with wavelet transformed Gaussians (so-called
gausslet). Here we use DVR basis sets for the z-discretization
such that the one- and two-electron integrals can be computed
easily with high accuracy. The DVR basis sets are rooted in the
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numerical quadrature and share the properties of locality and
orthogonality with the gausslets. The transversal orbitals are
constructed by solving the eigenstates of the transversal core
Hamiltonian, retaining fewer eigenstates than the number of
primitive basis functions. The parameters for the primitive
transversal Gaussian basis functions are extracted from
standard basis sets. Besides locality, another advantage of
using such hybrid Gaussian/real-space basis set is the electron
repulsion integral scales, instead of N( )4 using Gaussian-type
orbitals, as N N( )z

2
o
4 , where Nz is the number of slices and No

is the number of transversal orbitals for each slice. In general,
the required number of transversal orbitals is much smaller
than the number of canonical molecular orbitals No ≪ N. In
our construction of the transversal basis functions (see Sec. II),
the scaling can be further reduced to N N( )z o

4 for chain
molecules because the primitive transversal Gaussian basis
functions are the same for each slice.
We first apply our method to a one-dimensional pseudo-

hydrogen chain with screened Coulomb potential, where the
DVR set is expected to have better convergence with the
number of grid points. For this 1D model system, we also
implemented the complete active space configuration inter-
action (CASCI) method employing the same DVR basis sets,
with the complete active space defined by the HF canonical
molecular orbitals. CASCI includes all possible electronic
configurations (Slater determinants) by distributing electrons
among the active orbitals.27 Unlike the complete active space
self-consistent field, the active orbitals are predetermined, e.g.,
canonical HF molecular orbitals. It is shown that the DMRG
energy with a very small bond dimension D ∼ 10 matches the
CASCI energy up to 10−4 Eh. We then apply our method to a
realistic hydrogen chain, Hn. As the DVR basis set has not been
implemented in standard electronic structure methods for
realistic molecules, here we compare our results with CCSD
(coupled cluster singles and doubles) and FCI (full
configuration interaction) using conventional Pople basis set
to benchmark the accuracy. It is shown that the DMRG/DVR
energies with primitive Gaussians extracted from STO-6G is
lower than the FCI/6−31G energies. All codes are
implemented in our in-house Python-based package PYQED,
the matrix product state-based implementations are based on
the package RENORMALIZER.28

This paper is organized as follows. In Section 2, we present
the method of DMRG in a DVR basis set and then describe
the implementation details. The applications to a one-
dimensional pseudo-hydrogen chain model and to the realistic
hydrogen chain is shown in Section 3. We discuss the
challenges and future perspectives of DVR basis sets in Section
4.
Atomic units ℏ = e = me = 1 are used throughout.

2. METHOD
2.1. DVR Basis Set. The DVR basis sets consist of a

projection operator P̂, usually defined by a finite number of
basis functions P̂ = ∑n = 1

N |un⟩⟨un|, where {|un⟩} is an
orthonormal set, and a set of grid points {xi}, not necessarily
uniform.12,16 The DVR basis functions are obtained from the
projected position eigenstates corresponding to the grid points
(i.e., Dirac δ function ⟨x|xi⟩ = δ(x − xi)),

| = |P xi i (1)

It immediately follows that16

| = | = |x xi j i j i j (2)

Introducing the normalized states |ϕi⟩ = wi
−1/2|Δi⟩, wi =

⟨Δi|Δi⟩, if they satisfy the following property

| =x wj k j jk
1/2

(3)

they define a DVR set. Equations 3 and 2 imply the
orthonormality of a DVR set

| =i j ij (4)

There are many kinds of DVR sets such as the sinc
functions, Gauss−Hermite DVR, and particle-in-a-box eigen-
states (i.e., sine functions).12,16,17 The optimal choice depends
on the specific problem and the boundary conditions. One
example is the so-called sinc DVR

=x
x

x x x( )
1

sinc( ( )/ )i i (5)

where the grid points are xi = x0 + iΔx, i = 0, ±1, ±2,··· and Δx
is the grid spacing, corresponding to a projection operator of
band-limited functions P̂ = ∫ −Λ

Λ dp|p⟩⟨p|, where Λ = π/Δx is
the momentum cutoff. In practice, the infinite sinc functions
have to be truncated. The advantage of a DVR is the highly
localized character of the basis functions about the grid points.
Thus, only a small number of functions is required to represent
a spatially localized electronic orbital.
The DVR basis functions are approximately the eigenstates

of the projected position operator X = P̂x̂P̂. To see this,
applying the projection operator to x̂|xi⟩ = x̂(P̂ + Q̂)|xi⟩ = x̂(P̂2

+ Q̂)|xi⟩ = xi|xi⟩ (Q̂ = 1 − P̂) yields

| + | = |X PxQ x xi i i i (6)

where we have used P̂2 = P̂. In the complete basis set limit, Q̂ =
0, thus |Δi⟩ (|ϕi⟩) becomes exact eigenstates of the position
operator. In practice,

| |X xi i i (7)

It is not straightforward to find a DVR set satisfying strictly eq
3. A convenient way to construct a DVR basis set is to
diagonalize the X matrix under a finite basis representation
although they may not strictly satisfy eq 3.
An important property of DVR basis sets is that matrix

elements for coordinate-dependent operators Ô(x) (e.g.,
potential energy operator) can be simply computed by a
diagonal approximation without quadrature

= | |O O x O x( ) ( )ij i j ij j (8)

For any state |ψ⟩ = ∑i = 1
N ci|ϕi⟩, the expansion coefficients can

be simply obtained by left multiplying ⟨xj| and using eq 3,
leading to

=c w x( )j j j
1/2

(9)

Moreover, the kinetic energy operator matrix elements can be
computed exactly, instead of using a finite-difference method
which requires a dense uniform grid.
A straightforward way to construct a multidimensional DVR

is by direct product. For example, for d = 2,

= x yr( ) ( ) ( )i ii 1 2 (10)

where i = (i1, i2) and DVR grid ri = (xi d1
, yi d2

).
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2.2. Hybrid Gaussian/DVR. In principle, one can
discretize the three-dimensional real space by a direct product
DVR basis sets. However, one would encounter the singularity
of Coulomb potential at nuclear positions, such singular
potentials typically do not occur in vibrational problems. To
avoid singularities, one can instead choose to discretize one- or
two-dimensions and uses e.g., Gaussian basis functions for the
rest coordinates. One-dimensional discretization, leads to
sliced basis set,24 that are particularly convenient for chain-
like molecules and for DMRG algorithm. Two-dimensional
discretizations are less explored.
Here we focus on the 1D discretization (say z), and use

Gaussian basis sets for the transversal plane ρ = (x, y). The
exponents of the Gaussians are taken from the Pople basis sets,

= || ||e( )
2

i
i ii

2

(11)

where ρi is the center.
Here we choose the transversal basis set as the eigenstates of

the transversal core Hamiltonian.

| = |zh( )n n n n (12)

where h(zn) = T⊥ + V(zn) is the transversal single-electron core
Hamiltonian matrix represented in the 2D primitive Gaussian
bases for the nth slice, and εnα is the αth orbital energy. The
core Hamiltonian, unlike the Fock Hamiltonian, consists only
of the transversal kinetic energy T⊥ and electron−nuclear
attraction V(zn). It parametrically depends on the z coordinate
due to the electron−nuclear attraction. The advantage of such
transversal basis sets is that for noncollinear chain-like
molecules it can adapt to the local electric potential and
reduce the number of transversal orbitals.
We compare the contracted and uncontracted basis sets for

the hydrogen atom. We choose Nz = 256 grid points in the
range (−6, 6) a0 and with the minimal STO-6G basis (i.e., No
= 6). The contracted Gaussian basis sets are obtained simply
by slicing the STO-6G basis. That is, the transversal orbital for
nth slice is given by

=
=

C z( ) ( ; )n n
i

i i n
1

6

(13)

where χi(r) is the primitive Gaussian bases used in STO-6G
with Ci the contraction coefficients, and n is the
renormalization constant. The ground state energy with the
contracted basis set is −0.4776 Eh (exact value is −0.5 Eh).
Treating the six projected Gaussian functions {χi(ρ)} as
independent, the ground state energy with the transversal core
orbitals is improved to −0.4994 Eh. Note that the projected
Gaussian basis functions are independent of z upon
renormalization.

2.3. DMRG/DVR. Quantum chemistry computations starts
with building the one- and two-electron integrals in a chosen
basis set. The full basis set (atomic orbital) is given by

| = | |zni ni n (14)

where |ϕni⟩ is the ith transversal orbital at the nth slice and |zn⟩
denotes the nth DVR basis function. The number of DMRG
sites L = Nz × No is determined by the number of DVR slices
Nz and the number of transversal orbitals for each slice No.
With a DVR basis set, the kinetic energy operator in z-
direction =Tz z

1
2

2 can be computed exactly, whereas a

dense grid is required in finite-difference methods to have good
accuracy.
The core Hamiltonian matrix elements are given by

| + | = +T z T S hh( )ni z n j nn ij ni nn
z

ni n j ni n j, , (15)

where Sni,n′j = ⟨ϕni|ϕn′j⟩ = ∫ d2ρϕ*ni(ρ)ϕn′j(ρ) is the overlap
matrix between transversal basis sets at different slices.
Both the one-electron integrals (including the overlap

matrix, kinetic energy operator, and electron−nuclear
attraction) and the two-electron integrals (i.e., the electron
repulsion integrals)

=
| | +

v
z z

d d
( ) ( ) ( ) ( )

( )
ijkl
nn i

n
j
n

k
n

l
n

n n

2
1

2
2

1 2 2 1

1 2
2 2

(16)

can be analytically calculated, see App. A for details.
Thus, the electronic Hamiltonian in the second-quantized

form is given by

= +

+

†

=

† †H h c c v c c c c

V

1
2n n

ni n j ni n j
i j k l

N

ijkl
nn

ni n j n k nl
,

,
, , , , 1

NN

o

where VNN is the nuclear repulsion energy and σ, τ = {↑, ↓},
cniσ (cniσ† ) annihilates (creates) an spin-σ electron at i-th
transversal orbital of the nth slice. The electron operators
satisfy the canonical anticommutation relations {cniσ, cn′jτ

† } =
cniσcn′jτ

† + cn′jτ
† cniσ = δnn′δijδστ, {cniσ, cn′jτ} = 0.

The electronic Hamiltonian is mapped to an interacting spin
model by the Jordan-Wigner transformation.29 This trans-
formation is also widely used to map an electronic structure
problem onto a quantum computer.30 For spinful electrons,
the transformation reads

+

† + +

+

† + +

<

<

<

<

c

c

c

c

( 1) ,

( 1) ,

( 1) ( 1) ,

( 1) ( 1)

j
n n

j

j
n n

j

j
n n n

j

j
n n n

j

, ,

, ,

, ,

, ,

l j l l

l j l l

l j l l j

l j l l j

, ,

, ,

, , ,

, , ,
(17)

σ↑, j
± , σ↓, j

± are the spin-1/2 Pauli matrices at jth site. For a single
spin-orbital site in the {|0⟩, |↑⟩, |↓⟩, |↑↓⟩ } basis,

= =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

,

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0 (18)

As the creation and annihilation operators always appear in
pairs in the Hamiltonian, it is useful to note that

+ +n n(1 ), (1 )j j
z

j j
z

,
1
2 , ,

1
2 , .

For the Jordan-Wigner transformed Hamiltonian, a many-
spin eigenstate can be expressed as

| = | ······C L1 2L1 2
(19)

where L is the number of orbitals in the active space, |σl⟩ = {|
0⟩, |↑⟩, |↓⟩, |↑↓⟩ }.
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In DMRG, the high-dimensional coefficients (of size 4L) is
approximated by a MPS,

= ···[ ] [ ] [ ]C M M M L
1

1 2
1L
L

1
1

1 2
2

1
(20)

where Mα di−1αdi

[i]σi is a tensor with one index σn representing the
physical states and two virtual bond indices αi. In practical
implementations the bond dimension is restricted to be smaller
than a maximum D.
The DMRG calculation can be either carried out in the

original algorithm20 or the matrix product operator/matrix
product state (MPO/MPS) framework.21 We have imple-
mented both schemes for the pseudo-hydrogen model system
and used the MPO/MPS for realistic molecules.
The main steps for the conventional DMRG algorithm are

sketched below.
1. We first create electronic DVR basis sets {|ϕj⟩, j = 1, 2,...,

L}. Here we use sine DVR.
2. The DMRG calculation is initiated by the infinite

DMRG algorithm. For each step, the system block is
enlarged by one more site, the Hamiltonian of l+1 sites
is represented in terms of {|ψn

0,...,l−1⟩ ⊗ |σl⟩, n = 0, 1,..., D
− 1}. Similarly for the environment block. Build the
entire superblock Hamiltonian of 2(l+1) sites in terms of
{|ψn

0,...,l−1⟩ ⊗ |σl⟩ ⊗ |σl+1⟩ ⊗ |ψm
l+1,..., 2l+1⟩}.

3. Compute the ground state energy and eigenstate of the
entire system by e.g., Lanczos algorithm, compute the
reduced density matrix followed by Schmidt decom-
position (i.e., singular value decomposition), retain D
eigenvectors with largest Schmidt coefficients. The same
is applied for the environment block. Then, the system-
environment interaction operators is updated with the
new bases.

4. When the entire system reaches the desired length L
(i.e., number of DVR set), we start the sweeping
algorithm. During the sweep, the system block grows at
the expense of the environment block, with the total
number of sites (orbitals) conserved.

For the conventional DMRG algorithm, we fix the number
of electrons by an energy penalty

=

= +

H N N

n n N n N

( )

2

N

i j
i j

i
i

2

,

2

(21)

where N̂ = ∑i = 1
L ni is the total number operator. Nevertheless,

in the MPO/MPS implementation, we exploit two U(1)
symmetry corresponding to the conservation of electron
number and spin magnetic quantum number. The algorithm
used to enforce U(1) symmetry follows the same approach as
for canonical molecular orbitals.42 The reduced density matrix
is block-diagonal with respect to the quantum numbers, and
renormalization is performed only within each symmetry
block.
For the MPS implementation, the electronic Hamiltonian is

first represented in a MPO form using the bipartite graph
algorithm in ref 31 and the MPS is then optimized recursively.

3. RESULTS
We first consider a one-dimensional pseudo-hydrogen chain
model with screened Coulomb interaction.37 The electronic
Hamiltonian reads

= + + +
=

H v v vz z z( )
1
2

( ) ( )
i

N

i nn
1

2
ee en

e

(22)

where z is the proton positions along the chain. We use the
regularized Coulomb interaction

=v r
r

r
( )

erf( )
C (23)

This model mimics a single transversal basis limit of the sliced
basis DMRG.24

For comparison, we also computed the ground state energy
of a one-dimensional pseudo-hydrogen chain using the
complete active space configuration interaction (CASCI)
method with canonical molecular orbitals. The same DVR
basis set is used as the primitive basis. The canonical molecular
orbitals are obtained by a HF/DVR calculation (App. B)
followed by a CASCI calculation (implementation details
shown in App. C).
We use the sine DVR with grid points uniformly distributed

in the range of (−15, 15) Å. The boundary points are not
included as the open boundary condition is imposed, i.e.,
ϕ(xmin) = ϕ(xmax) = 0. For the DMRG, there is no need for the
HF calculation here since we directly use eigenstates of the
core Hamiltonian instead of the Fock Hamiltonian as the
transversal orbitals.
For the molecular geometry is z0 = [−L/2, −L/6, L/6, L/2],

L = 10 Å, the ground state energies are shown in Table 1. The
DMRG total energy with D = 12 matches the CASCI energy
with 12 active orbitals up to 0.1 mEh.

For the realistic hydrogen chain Hn, to benchmark the
accuracy of the DMRG/DVR method, we compare the
DMRG/DVR ground state energies with HF, CCSD, and
FCI using conventional Pople basis set varying the number of
hydrogen atoms n and the bond dimension D. The results are
shown in Figure 1. A more fair comparison should be using the
same basis set for all methods, but that is beyond the scope of
this work. Comparing the HF and FCI energies, the correlation
energy in the hydrogen chain is approximately 0.02 Eh per
atom. The CCSD results are in good agreement with FCI. For
n = 4, 6 hydrogen atoms the DMRG/DVR energies are found
to be lower than the FCI/6−31G energies. The FCI is limited
to 6 hydrogen atoms using a single CPU due to the
exponential grow of computational cost with the number of
orbitals, whereas DMRG can treat systems beyond reach of
traditional FCI implementations (96 orbitals here, Nz = 32, No
= 3). The FCI computations are performed using PYSCF.38

To show the advantages of DVR basis sets, Figure 2 shows
the convergence of DMRG with the bond dimension D for H4.

Table 1. Energies of DMRG/DVR and CASCI(no, ne)/DVR
with Different Sizes of Basis Sets for a 1D Pseudo-Hydrogen
Chaina

L method energy (Eh)

32 HF −1.412298
32 CASCI(6, 4) −1.423990
32 CASCI(12, 4) −1.425417
32 DMRG (D = 10) −1.424155
32 DMRG (D = 12) −1.425322

aD is the maximum number of states retained in DMRG, i.e., bond
dimension in the language of matrix product states.
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The ground state energy converges quickly at D = 40 up to 0.1
mEh reflecting the limited orbital entanglement in the DVR
sites. Increasing the bond dimension D from 20 to 40, the
DMRG energy only changes by 0.001 Eh per atom except for n
= 8 where the difference is slightly higher 0.003 Eh. In Table 2,
we used a larger basis set (6−311G**) for FCI for two
configurations of H4, the DMRG/DVR energies lie in between
the FCI/6−31G and FCI/6−311G**.

4. SUMMARY
We have developed an implementation of the DMRG and
CASCI using a hybrid Gaussian/DVR basis set. The electron
repulsion integrals can be easily computed and scales linearly
with the number of DVR basis functions. The DMRG and
CASCI with DVR basis sets are first applied to a one-
dimensional pseudo-hydrogen chain model with screened
Coulomb interaction and then to a realistic hydrogen chain.
For the model system, the DMRG results with a small bond
dimension agrees with the CASCI results up to 0.1 mEh. For
realistic Hn, the accuracy of DMRG/DVR energy with a small
bond dimension is in general comparable to the FCI energy

with Pople basis set. While we have only used s-type orbitals
for the hydrogen chain, it is straightforward to include p-type
orbitals in our method since the required matrix elements can
be analytically obtained.
These results demonstrate the utility of the hybrid

Gaussian/DVR basis sets in DMRG and multiconfigurational
electronic structure methods. Specifically, the DVR basis sets
can reduce orbital entanglement enhancing the convergence of
DMRG method. The use of nonatom-centered primitive basis
sets significantly simplifies the computation of many-electron
wave function overlap, which has been shown to account for all
nonadiabatic effects.13−15,39 Thus, the DMRG/DVR electronic
structure method can be directly integrated with the discrete
variable local diabatic representation method to model strongly
correlated electron−nuclear dynamics. For nonlinear mole-
cules, in principle, the DMRG/DVR method can be similarly
applied if a proper z-axis is chosen using off-centered 2D
Gaussians. There is a technical challenge in constructing the
analytical expressions for the Coulomb integrals using atom-
centered Gaussians. One possibility is to compute such
integrals numerically as in ref 24, then our method can be
applied to nonlinear molecules in the same way as the chain
molecules. It is also interesting to compare the DMRG/DVR
method to the sliced basis DMRG with gausslets.26 We will
explore these directions in the future.

■ APPENDIX

A. One- and Two-Electron Integrals
We use two-dimensional Gaussian basis for the transversal
plane ρ = (x, y)

= || ||e( )
2

i
i i i

2

(24)

where αi is the width and ρi is the center. The overlap integrals
between transversal Gaussian basis functions are

= | =
+

+ || ||S e
2

ij i j
i j

i j

i j

i j i j
2

(25)

For chain molecules, we choose the center for all Gaussians at
(0,0). The transversal kinetic energy matrix elements are

= | | =
+

T T
4( )

( )ij i j
i j

i j

3/2

2
(26)

The electron-nuclear attraction

Figure 1. Comparison of the ground state energies for varying lengths
of hydrogen chain between DMRG/DVR and HF, CCSD, and FCI
using conventional Pople basis set. The FCI method is limited to n =
6 due to the large computational cost. CCSD: Coupled cluster singlet-
doublet. FCI: Full configuration interaction. HF: Hartree−Fock.
DMRG: Density matrix renormalization group. DVR: Discrete
variable representation.

Figure 2. Convergence of DMRG energy with bond dimension for H4
at z = (−3.6, −1.1667, 1.1667, 3.6) a0. The number of DMRG sites is
96.

Table 2. Energies for Realistic Hydrogen Chain H4 at z1 =
(−3.6, −1.1667, 1.1667, 3.6) and z2 = (−3.6, −0.91, 0.91,
3.6) a0

a

method E(z1) E(z2)

HF/STO-6G −1.967556 −2.050585
FCI/STO-6G −2.084897 −2.143138
FCI/631G −2.159435 −2.200606
FCI/6311G** −2.185384 −2.227971
DMRG (D = 20) −2.174086 −2.241739
DMRG (D = 40) −2.176288 −2.243043

aIn DMRG/DVR, Nz = 32, No = 3. The exponents of the primitive
transversal Gaussian basis functions are extracted from the STO-6G
basis set.
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with
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where αij = αi + αj. To avoid numerical difficulty with large
variables in erfc(x), when x > 9, we use an expansion

+ + +x a t a t a t eerfc( ) ( ... ) x
1 2

2
5

5 2

(29)

where t = (1 + κx)−1, κ = 0.3275911, a1 = 0.254829592, a2 =
−0.284496736, a3 = 1.421413741, a4 = −1.453152027, a5 =
1.061405429.
A.1. Electron Repulsion Integral
T h e t w o - e l e c t r o n r e p u l s i o n i n t e g r a l

= Vijkl
nn 2 2 2 2

0
i j k l ,

=
|| || +

V
e

z
d d

nn
0

2
1

2
2

1 2
2 2

ij kl1
2

2
2

(30)

where znn′ = zn − zn′, ρi = ||ρi||. Inserting the Fourier
t r a n s f o r m a t i o n o f a G a u s s i a n
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into eq 30 leads to
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Upon integration over ρ1 and ρ2 yields

= + ( )V
k

e ekd
(2 )

2

ij kl

kz k
0

2 2

2
( )/ 4nn ij kl ij kl

2

(33)

It follows that
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B. Hartree−Fock/DVR
For comparison, we also implemented the CASCI using DVR
basis set. The active space is defined by the HF canonical
molecular orbitals (MOs). In the restricted HF theory, the
many-electron wave function is approximated by a single Slater
determinant (closed shell)

| = | ··· |n n0 1 1 /2 /2e e (36)

where ψp(ψ̅p) denotes, respectively, molecular orbitals with
spin up (down), ne is the number of electrons. The MOs are
expanded using the DVR basis set,

= Cr r( ) ( )n n
i

i i,
(37)

The optimal molecular orbitals minimizing the total energy are
obtained by diagonalizing the Fock matrix

[ ] = +F C h J K2 (38)

where

= | + | = +h v t vR
1
2

( )ij i j ij ij ien (39)

is the DVR core Hamiltonian consisting of the kinetic energy
and electron-nuclear interaction, = | |tij i j

1
2

is the
DVR kinetic energy matrix elements, Δ is the Laplacian in d-
dimensions.
The Hartree potential

=J v D
k

ij ij ik kk
(40)

is diagonal in the DVR set, and the exchange

=K v Dij ij ij (41)

Here Dij = ⟨Ψ0|cj†ci|Ψ0⟩ is the DVR one-electron reduced
density matrix, and vij = (ii|jj) is the electron repulsion. The
HF/DVR calculation scales linearly with the number of basis
functions N.
C. CASCI/DVR
CASCI is a full configuration-interaction computation in a
chosen subset of single-electron orbitals, i.e., the complete
active space. The orbitals can be the canonical molecular
orbitals defined in the HF theory, or natural orbitals defined as
the eigenstates of the one-electron reduced density matrix.
Upon the convergence of the self-consistent field cycle, the
electronic Hamiltonian can be transformed from DVR set to
MOs,

= + |
=

†

=

† †H h c c pq rs c c c c
1
2

( )
p q

pq p q
p q r s

p r s q
, , , , , , ,

(42)

where p, q, r, s labels the generic molecular orbitals. The MO
electron repulsion integrals in eq 42 can be obtained by

| =pr qs U U U U v( )
i j

i j i j ij
,

p q r s
(43)

where U is the transformation matrix from DVR set to MOs.
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The CASCI computation can proceed by building a full
configuration interaction Hamiltonian within the Slater
determinants or configuration state functions corresponding
to all possible excitations in the active space.32 Slater
determinants are chosen here as it simplifies the implementa-
tion,33

| = |c
I

I I
(44)

and the configuration intersection coefficients cα are obtained
by diagonalization,

= EHc c (45)

Each electronic configuration, or Slater determinant, is
labeled a binary array Bpσ

I , where p labels the orbital, σ = ↑, ↓ is
the spin index, and I labels the Slater determinant.34 The
matrix elements between determinants ⟨ΦJ|H|ΦI⟩ are com-
puted by the Slater-Condon rules.35,36 The full configuration
interaction method uses all MOs to build Slater determinants.
This is impractical as the computational cost scales
exponentially with the number of orbitals. The active space
is usually a subset of the MOs with the doubly occupied core
orbitals frozen. The energy of the frozen core electrons is the
same as a closed-shell molecule

= +E h J K2 2
f

ff
f g

fg fgFC
FC , (46)

The interaction between the active space and frozen core
orbitals reads

= | | †V ij kk ik kj c c(2( ) ( ))
i j k

i jAS FC
, AS FC (47)

where i, j refers to orbitals in the active space and k the frozen
core orbitals. The second-quantized Hamiltonian in the active
space reads

= + + |†

=

† †

H E h c c ij kl

c c c c

1
2

( )
i j

ij i j
i j k l

i k l j

AS FC
, , , , , ,

(48)

where h̃ij = hij + ∑k ∈FC2(ij|kk) − (ik|kj).
C.1. Implementation Details
The main steps for implementing the CASCI with DVR basis
sets are as follows

1. We first create electronic DVR basis sets {|χj⟩}, labeled
by j = (n1,..., nd) where d is the dimensionality of real-
space.

2. Perform mean-field HF calculation to yield MOs

| = | Up
j

j jp
(49)

and orbital energies εp. The DVR to MO transformation
is used to transform the creation and annihilation
operators,

= = [ ] †† † † †c U c c U c,p
p

p
j

j j j jp p
(50)

The HF self-consistent field computations are similar to
the standard Gaussian-type orbital-based computa-
tions,1,40 the only difference is that the one-electron
and two-electron integrals are straightforwardly eval-

uated in the DVR basis set. For spin-unrestricted
calculations,

= Cr r( ) ( )p
i

i ip
(51)

3. Fill electrons according to the Aufbau principle.
4. Choose the active space with L MOs.
5. Transform the electronic Hamiltonian to the second-

quantized form in the active space.
6. Build the configuration interaction Hamiltonian. Alter-

natively, we can also map the electronic Hamiltonian to
a spin model by Jordan-Wigner transformation. The
transformed Hamiltonian is highly sparse with size 4L for
spin unrestricted calculations as each orbital contains
four states |0⟩, |↑⟩, |↓⟩, |↑↓⟩.

7. Use Lanczos or Davidson matrix diagonalization method
to obtain low-lying eigenenergies Eα and eigenstates
|Ψα⟩. When the active space is large L > 20, a direct
diagonalization is impractical and more efficient
methods such as the density matrix renormalization
group methods and the iterative configuration inter-
section can be used.20,21,41
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Jónsson, E. Ö.; Hermes, E. D.; Nilsson, F. A.; Kastlunger, G.; Levi, G.;
Jónsson, H.; Häkkinen, H.; Fojt, J.; Kangsabanik, J.; Sødequist, J.;
Lehtomäki, J.; Heske, J.; Enkovaara, J.; Winther, K. T.; Dulak, M.;
Melander, M. M.; Ovesen, M.; Louhivuori, M.; Walter, M.; Gjerding,
M.; Lopez-Acevedo, O.; Erhart, P.; Warmbier, R.; Würdemann, R.;
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