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ABSTRACT: Insecticidal molecules with high activity are crucial for global pesticide reduction and food security. However, their
usage is limited by their concomitant high toxicity to bees. Balancing insecticidal activity and bee toxicity remains a critical challenge
in the exploitation of new insecticidal molecules. In this study, we propose a novel strategy for exploiting molecules that are both
highly effective against pests and minimally harmful to bees. A series of molecules were synthesized and tested to train a machine
learning (ML) model for predicting insecticidal activity against pests. Meanwhile, another ML model was trained by using publicly
available data to predict bee toxicity. The models demonstrated good performance, with mean AUC values of 0.88 + 0.05 for
insecticidal activity and 0.91 + 0.01 for bee toxicity. By integrating these two models, we successfully predicted and experimentally
validated a molecule that exhibited a high insecticidal activity and low bee toxicity. This dual-ML-model approach ofters a promising
pathway for the development of insecticidal molecules that are both effective and environmentally safe, thereby contributing to
sustainable agricultures.
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1. INTRODUCTION challenges in constructing a large, diverse data set from scratch,
we developed a specialized database of 181 molecules. This
database was created by synthesizing and testing structural
analogues of fluralaner, an isoxazoline molecule known for its
high insecticidal activity but also high bee toxicity.”*™*" A
specialized database allows for the training of accurate ML
models even with a small data set, and the predictions are likely
to identify molecules with high insecticidal activity similar to
fluralaner.””*" For bee toxicity, since there are standard
international guidelines for determining bee toxicity, there are
many publicly available high-quality databases.”>~** Therefore,
data from these databases were used to train an ML model for
predicting molecular toxicity.

We employed random forest algorithms for training the two
ML models due to their robustness, interpretability, scalability,
and ability to mitigate overfitting.*>® These models were used
to predict the insecticidal activity and bee toxicity of 10 newly
designed molecules, which were then validated experimentally.
The accuracy of the ML model for the 10 molecules was 70%,
demonstrating the effectiveness of our strategy. Among the 10
molecules, one molecule that exhibited high insecticidal activity
and low bee toxicity was further investigated in detail as a
potential candidate for pest control. Our work presents a rapid
and efficient strategy for discovering highly effective insecticidal

Insecticides play an important role in global food security.' ™
According to the food and agriculture organization of the United
Nations, the global consumption of insecticides reached
757,002.90 tons in 2021.*° These insecticides have greatly
protected crops, enhanced farmers’ produce, and increased crop
yields.”” However, with rising concerns over food safety and
policy shifts toward reducing pesticide usage, there is a growing
emphasis on discovering highly effective insecticidal mole-
cules.*” A major challenge with these molecules is their toxicity
to beneficial insects such as bees.'” Molecules with high
insecticidal activity often exhibit high toxicity to bees, limiting
their practical application. For instance, any pesticide with bee
toxicity exceeding 2 pg/bee is prohibited from being registered
in China. The traditional “trial and error” approach to
discovering new insecticides is time-consuming and expensive.
Thus, it is crucial to develop new strategies based on rational
design for the rapid and efficient discovery of highly effective
insecticidal molecules with low bee toxicity.

In recent years, machine learning (ML) has emerged as a
powerful tool for uncovering complex patterns and relationships
within data, facilitating accurate predictions and informed
decisions. ML has been extensively applied in fields such as MRI
image synthesis, drug discovery, disease diagnosis, biological
image analysis, and materials science.'' ~>* Despite their great
potential in the discovery of insecticidal molecules, ML
applications in this area are still nascent.

In this study, we proposed a dual-ML-model strategy, where
one model predicts the insecticidal activity of molecules and the
other predicts their bee toxicity. For the insecticidal activity,
given the absence of a standardized public database and the
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molecules with minimal bee toxicity, contributing to the
advancement of sustainable agriculture.

2. MATERIALS AND METHODS

2.1. Data Preparation. A total of 181 structural analogues of
fluralaner were synthesized (Supplementary Data 1) and tested for their
insecticidal activity against Plutella xylostella (P. xylostella), forming the
P. xylostella activity data set. A 100% insecticide rate at a concentration
of 25 mg/L was used as the criterion for the dichotomous classification.
Molecules causing less than 100% mortality are classified as inactive and
otherwise as active.

In the realm of predicting molecular activity through ML models, a
pivotal stage involves translating the structural attributes of molecules
into numerical representations, commonly referred to as molecular
descriptors.””*® In this study, a total of 208 molecular descriptors were
calculated in RDKit v2023.3.2 for each molecule.*” To mitigate the risks
of overfitting, careful preprocessing of these molecular descriptors was
necessary.”*' We adopted a concurrent approach of feature selection
and model training using the recursive feature elimination (RFE)
feature selection algorithm. Specifically, the RFE feature selection
algorithm from sklearn was utilized to systematically remove less
significant descriptors while training the model.** This strategic fusion
of RFE contributed to the optimization of the model’s predictive
capability.

Ultimately, 14 key molecular descriptors with the highest correlation
were identified to train the P. xylostella activity prediction model (PAP
model), which was key to establishing a mapping relationship between
structure and activity. Their importance to the PAP model was
calculated using the feature_importances_function of the random
forest algorithm (Figure S1).

Bee toxicity data were collected from different public databases: the
Pesticide Properties DataBase (PPDB) created by the Agriculture &
Environment Research Unit (AERU) at the University of Hertford-
shire, the Terrestrial US-EPA ECOTOX database present in the OECD
QSAR Toolbox v4.6 (www.gsartoolbox.org), and the Pesticide Action
Network Pesticide Database (PANPD) by Pesticide Action Network
North America (http://www.pesticideinfo.org). A total of 502
insecticide molecules were collected to form the final bee toxicity
data set (Supplementary Data 2). According to the Chinese bee toxicity
classification criteria, insecticides with an LDy, < 2 pg/bee are classified
as highly toxic. We used three times this criterion (LDs, < 6 pg/bee) as
the classification standard for the honeybee toxicity data set. Fourteen
key molecular descriptors were identified to train the bee toxicity
prediction (BTP model), and their importance to the BTP model was
calculated (Figure S2).

2.2. ML Model Development and Validation. After the
preprocessing of descriptors was completed, the focus shifted to
model training. The PAP model and BTP model were constructed
using the random forest algorithm. Internal validation plays a crucial
role in the development of random forest models. Statistical
parameters, including the area under the curve (AUC), serve as
yardsticks for evaluating performance. Internal validation was
conducted through S-fold cross-validation to assess the internal
predictive capability of the developed model.

The P. xylostella activity data set and bee toxicity data set were
randomly divided into training set and validation set using 5-fold cross-
validation in a 4:1 ratio, where four subsets were used to train the model
and the remaining subset was used for the cross-validation process.
Traversing the number of descriptors, number of estimators, maximum
depth, minimum sample split, and maximum features through a grid
searching method obtained a group of parameters that achieved the best
AUC values for the PAP model and the BTP model. The optimized
parameters for the random forest algorithm were 110 estimators, a
maximum depth of 20, a minimum sample leaf of 1, and a minimum
sample split of 2 for the PAP model, and 110 estimators, a maximum
depth of 8, a minimum sample leaf of 3, and a minimum sample split of 2
for the BTP model.

Beyond internal validation, external validation is crucial for
ascertaining a model’s generalization capacity and authentic predictive
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potential. An external test set of 37 molecules from the P. xylostella
activity data set and 101 molecules from the bee toxicity data set was
used to evaluate the generalization ability of the PAP model and BTP
model.

2.3. Prediction and Synthesis of New Molecules in the Dual-
ML Model. Ten new molecules were designed, and their activity and
bee toxicity were first predicted using the dual-ML model we
constructed. Molecules classified as positive by the PAP model and
negative by the BTP model were synthesized and validated by
bioassays.

In this study, all 10 molecules were synthesized. Details of synthesis
procedures, reagents, and instrumentation are presented in the
Supporting Information.

2.4. Bioassay of New Molecules on P. xylostella. For the
purpose of conducting the activity assays, all P. xylostella was kindly
supplied by National Key Laboratory of Green Pesticide/Key
Laboratory of Natural Pesticide and Chemical Biology, Ministry of
Education (South China Agricultural University, Guangzhou, Guang-
dong, China). The P. xylostella was cultivated on an artificial diet under
controlled environmental conditions. This encompassed maintaining a
temperature of 25 + 1 °C, a relative humidity of 65 + 5%, and a
photoperiod cycle of 16:8 h (light:dark).

All experiments were conducted in small plastic Petri dishes (3 cm
diameter, S cm height) containing round filter paper and a strip of paper
towel. With 10 third-instar larvae of P. xylostella per plate, the plates
were placed in an incubator at 25 & 1 °C at 65% relative humidity, with
an L:D photoperiod of 16:8 h.

The assessment of molecular activity was executed through
meticulous procedures. SAF-A, SAF-E, and SAF-G from the test set
were solubilized in DMSO and subsequently diluted with distilled water
containing Tween-80 (0.1% v/v) to yield a solution of 25 mg/L and §
mg/L. In the initial stages of each experiment, leaf discs (14 cm in
diameter) were excised from greenhouse-grown fresh cabbages. These
discs were immersed in the test solution for a duration of 30 s, after
which they were left to air-dry naturally.

The experimental process involved supplying three leaf discs treated
with the respective molecule to third-instar larvae. After 24 h, fresh
leaves were provided as required. The negative control comprised
treatment with a solution containing 0.1% (v/v) Tween-80 and 0.01%
(v/v) DMSO dissolved in distilled water. Each experiment was
meticulously replicated three times to ensure reliability. The mortalities
(%) were conducted 48 h post-treatment, constituting the core
outcome measure for the activity assessment.

Based on the above process, the insecticidal activities of the
molecules were determined and classified as positive by the PAP model
and negative by the BTP model and then their bee toxicity was verified
in turn.

2.5. Bioassay of New Molecules on Bees (Apis cerana).
Bioassays were conducted following the method outlined in the Test
guidelines on environmental safety assessment for chemical pesticides-Part
10: Honeybee acute toxicity test, with certain modifications. To elaborate,
the experimental procedure is presented as an example of the highest
ranked SAF-A. Ten bees were placed in a wooden beehive with
dimensions of 20 cm on each side and starved for 2 h before the start of
the test. Subsequently, the bees were granted free access to a sucrose
solution (50% w/v) containing SAF-A for a duration of 4 h. The bees
were provided with a sucrose solution devoid of SAF-A for the
remaining duration of the experiment. For the control group, bees were
exclusively administered the sucrose solution. A concentration of 6 yig/
bee was used to verify bee toxicity, and the experiment was performed in
three replicates. Beehives were maintained at 25 + 1 °C and 75 + 5%
RH in the dark except during observations. The mortalities of
honeybees were recorded at 48 h after treatment.

2.6. Careful Study of the Properties of SAF-A. In order to
comprehensively study the efficacy of SAF-A in controlling the binge-
feeding stage of the cabbage moth, feeding bioassays were conducted on
third-instar larvae and fourth-instar larvae specimens. Each devel-
opmental stage was subjected to four replicates, where one replicate
comprised either 10 third-instar larvae or 10 fourth-instar larvae
individuals within a single Petri dish.

https://doi.org/10.1021/acs jafc.4c08587
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Figure 1. Schematic of construction process of the PAP model and the BTP model. The molecules were converted to SMILES strings and classification
by P. xylostella activities or bee toxicities. The molecules were then randomly split, and the key molecular descriptors were identified using the RDKit
Python package The models were built with the random forest-based machine learning method. AUC values were evaluated to obtain the best model

by optimizing the parameters.

For the larval bioassays involving SAF-A treatments, four distinct
concentrations were employed: 0.5, 2.5, 5, and 25 mg/L. The activity of
SAF-A against P. xylostella was determined using the leaf dipping
method. At the initiation of each experiment, the third-instar larvae
were supplied with three leaf discs, while the fourth-instar larvae were
offered four. Leaf discs were replaced every 24 h, and only the first 24 h
leaf discs were loaded with the drug. As a reference, a control group was
treated with distilled water containing 0.1% (v/v) Tween-80 and 0.01%
(v/v) DMSO.

To investigate the effect of SAF-A on the feeding inhibition of P.
xylostella, leaf discs were subjected to treatment with solutions of either
0.5 or 2.5 mg/L of SAF-A, following the procedure outlined earlier.
One treated leaf disc, within a single Petri dish and per replicate, was
exposed to being eaten by one third-instar larva. Periodic observations
were made, and fresh leaf discs were introduced 24 h after the start of
the experiment. Photographic documentation was carried out at 12, 24,
36, and 48 h. It is worth mentioning that 10 replications were conducted
for each treatment group.

A specific focal point was the investigation of the effect of SAF-A on
the development of third-instar larvae. This assessment was conducted
ata concentration of 0.5 and 2.5 mg/L. Two control groups were set up:
one control group was fed normally, and the other was a fasting group.
Photographic documentation of the developmental stages of surviving
larvae for each treatment was undertaken 48 h after the commencement
of feeding. Notably, each treatment consisted of three replicates of 10
third-instar larvae each.

The adult bioassay experiments necessitated a modified approach. A
small aperture, approximately S mm in diameter, was introduced into
the lid of the Petri dish. This opening was plugged with a cotton
material. SAF-A was dissolved in DMSO and subsequently diluted
using a 10% (v/v) honey solution, resulting in concentrations of S, S0,
100, 200, and 400 mg/L. Five nymphs were placed in each Petri dish,
and each concentration was repeated 18 times. The commencement of
the experiment coincided after the emergence of adult eclosion. The
number of fledged nymphs in each Petri dish was counted, and the
unfledged nymphs were removed from the Petri dish. Eventually, ck
(without SAF-A), 5, 50, 100, 200, and 400 mg/L had 73, 54, 46, 48, 50,
and 53 adults for the bioassay, respectively. A pipet gun was employed
to administer 300 yL of the prepared honey solution containing the
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SAF-A onto the cotton, ensuring the cotton remained moist without
excess liquid dripping off. Once again, the control group was treated
with a honey solution containing 0.1% (v/v) Tween-80 and 0.01% (v/
v) DMSO. Mortality was observed and counted at 48 h.

2.7. Insecticidal Activity—Bee Toxicity Window of SAF-A.
Using the methods described above, the activities of fluralaner and
SAF-A were determined against P. xylostella and their toxicity assay to
bees, respectively. For activity bioassays to P. xylostella, eight
concentrations of SAF-A, 0.25, 0.5, 1, 2, 3, 4, 5, and 25 mg/L, and
five concentrations of fluralaner, 0.005, 0.01, 0.02, 0.03, and 0.04 mg/L,
were used for the treatments, respectively. For bioassays of bee toxicity,
four concentrations of SAF-A, 50, 100, 150, and 300 mg/L, and five
concentrations of fluralaner, 0.00625, 0.0125, 0.025, 0.05, and 0.1 mg/
L, were used for the treatments, respectively. Three replicates per
treatment and 10 experimental subjects per replicate were used.

2.8. Homology Modeling and Molecular Docking Studies.
The 3D structure of the y-aminobutyric acid receptor (GABAR) of P.
xylostella was constructed by homology modeling using an online
protein structure prediction server (SWISS-MODEL). Molecular
docking was finished by YASARA version 16.7.22, and the details are
described in the Supporting Information.

3. RESULTS

3.1. Dual-ML Model. The workflow of our dual-ML-model
strategy is illustrated in Figure 1. We synthesized 181 structural
analogues of fluralaner (Supplementary Data 1) and assessed
their insecticidal activities against a harmful pest, P.
xylostella.””** The dichotomous classification criteria of these
molecules were set as a 100% insecticide rate at a concentration
of 25 mg/L to identify those with high activity. Among the total
181 molecules, 144 were randomly selected to form a training set
to develop the PAP model. Using the RFE feature selection
algorithm, we identified 14 key molecular descriptors most
correlated with insecticidal activities (Figure S1).*” The PAP
model was carefully fine-tuned to ensure a balance between
model complexity and prediction accuracy, achieving a mean
AUC value of 0.88 + 0.05 (Figure 2a). The high AUC value

https://doi.org/10.1021/acs jafc.4c08587
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Figure 2. Evaluation and validation of the PAP model and the BTP model. a The ROC curves of the PAP model (S-fold cross-validation). b External
data set validation of the PAP model (another 37 molecules in the 181 molecules). TP (true positive), TN (true negative), FP (false positives), and FN
(false negative). ¢ The ROC curves of the BTP model (S-fold cross-validation). d External data set validation of the BTP model (another 101

molecules in the 502 molecules).

suggests the ability to effectively distinguish between positive
(active) and negative (inactive) molecules, while the small error
suggests robustness and consistency of the PAP model.

An external test set of 37 molecules was used to evaluate the
generalization ability of the PAP model. As shown in Figure 2b,
the model correctly predicted 16 molecules as active (true
positive, TP) and 12 as inactive (true negative, TN), with an
overall accuracy of 75.7%, indicating that the PAP model
possesses a high generalization ability. Although only 144
molecules were used to train the PAP model, the data’s high
quality enabled the creation of a robust model. Another reason
for obtaining such high-quality predictive models is attributed to
the homogeneity of the data set, consisting of a series of
structural analogues. In contrast to data sets containing diverse
molecular skeletons, data sets consisting of structural analogues
reduce the data size needed for model construction. This result
indicates that building a data set from a highly active structure
can expedite the development of effective ML models,
facilitating the discovery of highly active insecticidal molecules.

Similarly, the BTP model was constructed using a data set of
401 molecules with experimental toxicity data from public
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databases (Supplementary Data 2). According to the Chinese
guidelines for bee toxicity, insecticides with LDy < 2 pg/bee are
prohibited. Here, we used three times this concentration as our
classification criterion (that is, insecticides with LDs, < 6 pg/
bee are considered to be highly toxic and unacceptable) to
identify molecules with low bee toxicity. The RFE algorithm
identified 14 key molecular descriptors for training the BTP
model (Figure S2). The BTP model achieved a mean AUC value
of 091 + 0.01 (Figure 2c), indicating strong predictive
performance. The model’s generalization ability was further
validated using an external test set of 101 molecules, achieving
an accuracy of 79.2% with 27 correctly predicted as nontoxic
(TN) and 53 as toxic (TP) (Figure 2d).

The high predictive accuracy on the external test set and the
high AUC values of both models illustrate the capability to
predict highly insecticidally active molecules with low bee
toxicity.

3.2. Prediction of Potential Insecticidal Molecules. To
demonstrate the effectiveness of the dual-ML model, we
designed 10 new structural analogues of fluoroaners (SAFs)
shown in Table 1.and predicted their activity and bee toxicity.
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Table 1. Structural Formula and Prediction Results of SAFs

PAP
BTP model
Molecule Structural formula model
prediction®
prediction®
O/N
SAF-A :K 1 0
Cl
oN
SAF-B j\rN% 0 0
o N
SAF-C NJYH N 0 1
o FF 0 INJ\
i N o
D) S H
SAF-D NJYNQ 0 1
ol F PP ° cl
Cl N o
07N
SAF-E NJYH 1 0
1 I
SAF-F W 0 1
,N i
SAF-G W@i 1 0
F N N
(o2 N/
SAF-H ¢ _ HN@s 1 1
PN
c o Q o n
SAF-I NjwrNY 0 0
o e o
SAF-J

RF L

:
oN O 0

o FPF

“The data set negative (inactive) is 0 and positive (active) is 1.
data set negative (nontoxic) is 0 and positive (toxic) is 1.

bThe

Molecules classified as positive by the PAP model and negative
by the BTP model, namely, molecule SAF-A, SAF-E, and SAF-
G, were screened out. These three molecules were synthesized
according to the synthetic route shown in Figure S3. Their
structures were confirmed by 'H NMR, *C NMR, and MS as
shown in Figures S4—S6. Furthermore, the P. xylostella activity
of SAF-A, SAF-E, and SAF-G was tested experimentally. As
shown in Figure 3a, at 25 mg/L, both SAF-A and SAF-G could
lead to 100% mortality of P. xylostella. At a lower concentration
of 5 mg/L, SAF-A showed superior lethality, achieving a 100%
mortality rate (Figure 3b). SAF-A possesses the highest
insecticidal activity among SAF-A, SAF-E, and SAF-G. Finally,
the bee toxicity of SAF-A was assessed at 6 yg/bee. As shown in
Figure 3¢, the mortality of bees was 40.8 + 2.9% < 50%,
indicating that the LDy, value of SAF-A against bees was more
than 6 pg/bee. Therefore, SAF-A was confirmed as a molecule
with a high insecticidal activity and low bee toxicity.

The overall molecular discovery process is depicted in Figure
3d. The dual-ML-model approach allows for efficient virtual
screening, reducing the number of molecules that need to be
experimentally tested for insecticidal activity and bee toxicity.
For the 10 structural analogues of fluralaner, only three
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molecules required insecticidal activity testing and one required
bee toxicity testing to identify the candidate molecules. In fact,
all 10 molecules were synthesized (Figures S7—S14) and their
insecticidal activities were tested at 25 mg/L. As shown in Table
S1, the accuracy of the PAP model on these 10 molecules was
70%, further confirming the feasibility of this strategy.

3.3. Insecticidal Activity and Bee Toxicity of SAF-A. As
SAF-A was one molecule with high insecticidal activity and low
bee toxicity, the property of SAF-A was carefully studied to
provide a candidate for the P. xylostella control. As the third and
fourth-instar larvae are mainly responsible for widespread plant
damage caused by P. xylostella, the insecticidal activity of SAF-A
against third-instar larvae and fourth-instar larvae was
investigated. As shown in Figure 4a, in the case of third-instar
larvae, 0.5 mg/L SAF-A led to a significantly lower survival rate
than the control treatment after 36 h, while for fourth-instar
larvae, the time that 0.5 mg/L SAF-A resulted in significantly
lower survival rate than the control treatment was delayed to 60
h (Figure 4b). The situation was similar at the other
concentrations, suggesting that SAF-A was more effective
against third-instar larvae than against fourth-instar larvae.

Analyses of the dose—mortality relationship at the same time
and the mortality—time relationship at the same virulence
further illustrate this view. As shown in Figure 4c, the insecticidal
activity of SAF-A against third-instar larvae of P. xylostella was
significantly higher than that against fourth-instar larvae of P.
xylostella, at both 48 and 72 h. The LCy, of SAF-A against third-
instar larvae of P. xylostella was 0.99 mg/L (48 h) and 0.368 mg/
L (72h). Besides, SAF-A took effect more rapidly on third-instar
larvae than on fourth-instar larvae when both doses used
resulted in 80% mortality at 72 h, as shown in Figure 4d.
Therefore, SAF-A is recommended for use in the third instar of
P. xylostella.

The bee toxicity of SAF-A was further scrutinized. As shown
in Figure 4e, the LCs, of SAF-A against bees was 222 mg/L
(8.90 pg/bee). In order to evaluate the selectivity of insecticidal
molecules in a better way, we proposed the concept of the
insecticidal activity—bee toxicity window, that is, log(LCs, 1)
— log(LCygy, p. xylgste”u), referring to the therapeutic window in
medicine. For fluralaner, although its P. xylostella activity was
higher than SAF-A, its insecticidal activity—bee toxicity window
was 0, lacking selectivity, while for SAF-A, its insecticidal
activity—bee toxicity window was 1.6, with good selectivity.
Considering its high insecticidal activity and low bee toxicity, the
molecule SAF-A we screened demonstrates great potential for P.
xylostella control.

3.4. Effects of SAF-A on the Third-Instar Larvae of P.
xylostella. We further explored how SAF-A affects the survival
of third-instar larvae of P. xylostella. As shown in Figure 5a,b, the
third-instar larvae treated with 2.5 mg/L SAF-A consumed less
leaf material compared to both the 0.5 mg/L treatment group
and the control group after the initial 12 h of feeding. At 24 h, the
leaf consumption of both treatment groups was significantly
lower than that of the control group. The feeding inhibition in
the treatment groups continued after replacement of new leaf
discs without SAF-A, as shown in Figure Sc,d. The third-instar
larvae in the 2.5 mg/L treatment group even showed no
consumption of leaves at 36 and 48 h, despite that the third-
instar larvae were not completely dead at 36 and 48 h. These
results indicate that SAF-A can inhibit the feeding behavior of
third-instar larvae of P. xylostella, which facilitates the reduction
of crop losses due to feeding by P. xylostella.
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Figure 3. Discovery process of SAFs with high insecticidal activity and low bee toxicity. The mortality of P. xylostella after being fed with leaves soaked
by a 25 mg/L and b 5 mg/L SAFs. Mean =+ SE, n = 3, analysis by one-way ANOVA followed by Tukey’s pairwise test, P < 0.0S. ¢ The mortality of bees
after being fed with a sucrose solution (50% w/v) containing SAF-A. Mean + SE, n = 3. d Schematic of the insecticidal molecular discovery process
with the dual-ML model. The newly designed molecules were predicted by the dual-ML model, and if there were molecules classified as positive by the
PAP model and negative by the BTP model, the next step of validation and ranking of activity was performed; if the set of candidate molecules is empty,
then a new batch of molecules was redesigned and the previous step was repeated.

For the growth of larvae, as shown in Figure Sef, the few
individuals that survived the SAF-A treatment were significantly
inhibited in their development, which were still in the early
stages of third-instar larvae, whereas larvae in the control group
had grown to fourth-instar larvae. Besides, although the body
lengths of the third-instar larvae in the 2.5 mg/L treatment
group were close to that in the fasting group, the fasted third-
instar larvae could grow normally when feeding was resumed,
whereas the third-instar larvae treated with 2.5 mg/L SAF-A
eventually died altogether. In addition, significant epidermal
darkening was observed in the third-instar larvae treated with
SAF-A. Considering that SAF-A is a structural analogue of
fluralaner, whose target is insect y-aminobutyric acid recep-
tor,"** and that both feeding inhibition and epidermal
darkening are consistent with the manifestation of impaired
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normal function of GABAR,"™** it is hypothesized that the
target of SAF-A may also be GABAR.

3.5. Molecular Docking of SAF-A to GABAR of P.
xylostella and Bees. Molecular docking was used to verify
whether GABAR is a target of SAF-A. The GABAR models of P.
xylostella were first built with human f$3 GABAR as the
homologous templates (Figure §15).>°> The Z-score value of
GABAR models of P. xylostella was —4.04, which is within the
A
Ramachandran plot showed that residues in most favored
regions accounted for 93.2%.%”°° These results indicated that
the GABAR models were of high quality and could be further
used. The stable conformation of SAF-A and GABAR of P.
xylostella is shown in Figure 6a, with binding energy of 6.40 kcal/
mol, which indicates that GABAR is a target of SAF-A.

. . . . .56
range of typical scores for similarly sized native proteins.’
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Figure 4. Detailed study of the insecticidal properties of SAF-A. a Effect of feeding SAF-A on the survival rate (%) of P. xylostella with assay time (h) of
third-instar larvae (mean + SE, n = 4 biologically independent experiments). b Effect of feeding SAF-A on the survival rate (%) of P. xylostella with
assay time (h) of fourth-instar larvae (mean + SE, n = 4 biologically independent experiments). c Dose—mortality relationship of third- and fourth-
instar larvae at 48 and 72 h, respectively. Graphing used the logarithm of concentrations. d Mortality—time relationship between third- and fourth-
instar larvae of the same virulence at 80%, respectively. e Study of the insecticidal activity—bee toxicity window of SAF-A and fluralaner, i.e.,
log(LCsp, pee) = 10g(LCos, p. sytosteita) (mean =+ SE, n = 3 biologically independent experiments). Concentrations were standardized and plotted using a
logarithm. The activity of SAF-A against P. xylostella was determined using the leaf dipping method, where leaf discs were replaced every 24 h, and only
the first 24 h leaf discs were loaded with the drug. Data represent mean + SE (n = 4 biologically independent experiments). Curves with different letters
indicate significant differences (P < 0.05). Source data are provided as a Source Data file.

We wondered whether the interaction of SAF-A and GABAR
was one reason for the differing activity of SAF-A against P.
xylostella and bees. To this end, the effect of the insect instar on
activity was first excluded. As shown in Figure S16, the LCs
values of SAF-A against adults of P. xylostella were 81 mg/L,
higher than the LCs, of SAF-A against third-instar larvae of P.
xylostella but lower than the LCs, of SAF-A against adult bees,
suggesting that insect instar is not the only reason that affects
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selectivity. Molecular docking was further performed to study
the interaction of SAF-A and GABAR of bees. As shown in
Figure S17 and Figure 6b, the binding energy of SAF-A to the
GABAR of the bee was only 4.69 kcal/mol, which was much
lower than the binding energy of SAF-A to the GABAR of P.
xylostella. Therefore, the difference in binding energy, together
with the fact that SAF-A acts on third-instar larvae of P. xylostella

https://doi.org/10.1021/acs jafc.4c08587
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Figure S. Effects of SAF-A on the feeding and development of third-instar larvae of P. xylostella. a The area of leaves consumed by a third-instar larva at
12 and 24 h after feeding on leaf discs soaked in SAF-A at concentrations of 0.5 and 2.5 ppm and control solutions, respectively. b Percentage of leaves
consumed by third-instar larvae at 12 and 24 h (mean =+ SE, n = 3 biologically independent experiments). ¢ A fresh leaf disc was replaced at 24 h, and
the area of the leaf disc consumed at 36 and 48 h was recorded after treatment. d Percentage of leaves consumed by third-instar larvae at 36 and 48 h
(mean =+ SE, n = 3 biologically independent experiments). e Photograph of the larval developmental stages at 48 h following the start of the experiment
after feeding on two concentrations of SAF-A, 0.5 and 2.5 mg/L. One control group was fed normally for 48 h, and the other control group was starved
for 48 h. f The body length of P. xylostella in the experiment of e (mean + SE, n = 3 biologically independent experiments). The activity of SAF-A
against P. xylostella was determined using the leaf dipping method, where leaf discs were replaced every 24 h, and only the first 24 h leaf discs were
loaded with the drug. Data represent mean + SE (n = 3 biologically independent experiments). Columns with different letters indicate significant

differences (P < 0.0S). Source data are provided as a Source Data file.

but adults of bees, leads to the high selectivity between P.
xylostella and bees of SAF-A.

4. DISCUSSION

Designing insecticidal molecules with both high activity and low
bee toxicity is of vital importance for green agriculture. However,
achieving this balance is challenging, as molecules toxic to pests
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often also harm bees. In this study, we introduced a dual-ML-
model strategy, consisting of an insecticidal activity prediction
model and a bee toxicity prediction model, to identify molecules
with both of the desired properties.

In building these ML models, the scale and quality of the
molecule data set play crucial roles. A larger data set generally
provides more information for the models to learn from, which

https://doi.org/10.1021/acs jafc.4c08587
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Figure 6. Molecular docking studies. a The stable conformation of SAF-A exhibits a binding energy of 6.40 kcal/mol with GABAR of P. xylostella.
Binding energy is contributed by ILE-253A, LEU-261A, VAL-308B, ASP-312B, VAL-313B, GLY-316B, PHE-319B, VAL-320B, PHE-323B, ALA-
324B, and LEU-327B together. b The stable conformation of SAF-A exhibits a binding energy of 4.69 kcal/mol with the GABAR of bees. Binding
energy is contributed by ILE-257A, ILE-261A, LEU-265A, ILE-268A, MET-299B, VAL-312B, ASP-316B, GLY-320B, PHE-323B, VAL-324B, PHE-

327B, and LEU-331B together.

helps in improving the generalization ability of the models.
High-quality data consisting of accurate bioassay results are
essential for the reliability of the models. However, for
discovering molecules with high insecticidal activity and low
bee toxicity through ML, high-quality data remain scarce,
especially for insecticidal activity. Given this current situation,
we developed predictive models using structural analogues
derived from highly active molecules. This approach requires
only a small number of experiments to generate sufficient
training data.’”*® For bee toxicity, we leveraged existing
extensive databases of commercial chemical molecules, which
provided ample data for training the toxicity prediction model.
The BTP model thus constructed exhibits a high general-
izability. Although the dual-ML model we constructed is only
suitable for predicting structural analogues of fluralaner, it can be
extended to other types of molecules by inputting new data sets.

Using this dual-ML model, we predicted SAF-A as a molecule
with high insecticidal activity and low bee toxicity. Experimental
validation confirmed SAF-A’s efficacy, with an LCy, of 0.99 mg/
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L for P. xylostella and an LCy 0f 222 mg/L for bees, indicating its
potential as an effective and safe insecticide.

In summary, the dual-ML-model strategy significantly
enhances the efliciency of insecticidal molecule discovery,
providing agriculture with effective and safe insecticidal
molecules. This approach is anticipated to support the
development of sustainable agriculture.
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