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ABSTRACT: We present a novel methodology through casting the dynamical density matrix
renormalization group (DDMRG) into the matrix product state (MPS) formulation to calculate
the spectroscopy at finite temperature for molecular aggregates. The frequency domain algorithm
can avoid the time evolution accumulation of error and is naturally suitable for parallelization, in
addition to facile graphic processing unit (GPU) acceleration. The high accuracy is demonstrated
by simulating the optical spectra of vibronic model systems ranging from an exactly solvable
dimer model to a more complex real-world perylene bisimide (PBI) J-aggregate. The relationship
between the 0−0 emission strength and the exciton thermal coherent length is discussed for
linearly stacked aggregates. The computing performance largely boosted by GPU demonstrates
that DDMRG emerges as a promising method to study dynamical properties for complex
systems.

Density matrix renormalization group (DMRG) was
initially developed for the electronic structure of strongly

correlated systems, especially for one-dimensional lattice
models,1,2 and immediately it has been applied to quantum
chemistry from semiempirical Hamiltonian to ab initio
calculation.3−7 Recently, the time-dependent (TD) formula-
tion of DMRG, called TD-DMRG,8−11 has also been used to
calculate the real-time dynamics and spectroscopy of electron-
vibration coupled systems, including the linear optical
spectroscopy,12 exciton dissociation,13 ultrafast internal con-
version,14,15 and singlet fission.16,17 Combined with the
purification method,18−20 the thermal equilibrium properties
or temperature-dependent dynamical properties could also be
calculated by directly time-evolving the density matrix.12 In a
very short time, TD-DMRG has emerged as an efficient and
effective quantum dynamics method for a complex system.
Nevertheless, the accuracy of TD-DMRG is restricted by the

maximum accessible time,21,22 as a result of the quick growth
of entanglement during the time evolution. It has been
reported that great care must be taken when investigating the
transport properties because the long time evolution would
sometimes give a seemingly converged but actually unreliable
diffusion coefficient.23 A similar problem will emerge when
calculating the spectrum with high resolution because of the
Fourier relationship between time and frequency. However,
the frequency domain DMRG methods11,24−31 can provide a
different perspective to avoid the time evolution problem. The
original Lanczos-DMRG24 and the newly proposed Chebyshev
matrix product state (CheMPS)30 are both modified moments
expansion methods with the advantage of producing the entire
spectrum by one batch of calculation. However, the
prerequisite of these methods is that the vectors in the Krylov

space should be orthogonal to each other, which would be
violated due to the truncation error in DMRG, in addition to
the round-off error. In that case, it is hard to obtain a high-
resolution spectra, although it has been shown that carrying
out the costly reorthonormalization could partly relieve this
problem.32,33 On another side, correction vector (CV)-DMRG
was developed by Ramasesha and Shuai et al. for both linear
and nonlinear responses,25,26 which targets one frequency at
one time calculation. Based on CV-DMRG, a variational
algorithm, termed as dynamical DMRG (DDMRG), was
suggested by Jeckelmann,28 which was shown to have
improved accuracy. All of these methods were initially
developed for response properties at zero temperature. Only
recently have the Lanczos-DMRG and CheMPS been
extended to finite temperature.34,35

Here, we propose an algorithm to extend DDMRG to finite
temperature and reformulate it in the framework of matrix
product state to overcome several drawbacks of the original
DDMRG algorithm. We will demonstrate that such an
approach can serve as an accurate and reliable route to
calculate the linear response function at finite temperature for
molecular aggregates and could be largely accelerated with the
state-of-the-art algorithm and hardware.
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In DMRG, the wave function and operator could be
represented by the matrix product state (MPS) and the matrix
product operator (MPO),36,37
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where σi is the local basis with dimension d. One good feature
of DMRG is that the accuracy is solely determined by the
dimension of σA i, named (virtual) bond dimension M, and thus
could be systematically improved.
According to the linear response theory, the spectral

function of optical spectroscopy is
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where = [ ̂ ·]H ,0 is the Liouville superoperator and μ ̂ is the
dipole operator. For ω > 0, the two terms χ(1)(ω) and χ(2)(ω)
physically represent the stimulated absorption and stimulated
emission, respectively. Between them, χ(2)(ω) could be
omitted safely for absorption spectrum when the energy gap
between the ground state and the excited state is much larger
than the energy scale of temperature, which is usually the case
for the electronic spectroscopy in the ultraviolet−visible region
at room temperature. But for the infrared absorption, it is
necessary to calculate both the two terms, which have a
relation χ(1)(−ω)* = −χ(2)(ω).
We define the correction vector C(ω) at finite temperature

as

ω
ω η

μρ=
− +

̂ βC( )
1

( i )
1/2

(6)

Here, C(ω) is an MPO and ρ β=β
β− ̂ Ze / ( )H1/2 /20

( β = β−Z eTr( ) ( )H0 ), which could be obtained by integrating
the imaginary time Schrödinger eq (eq 7) from τ = 0 to τ = β/
2. Since eq 7 is not unitary, ρ(τ) is normalized with condition
⟨⟨ρ(τ)|ρ(τ)⟩⟩ = Tr(ρ†(τ) ρ(τ)) = 1 after each step of
evolution.

τ
ρ τ ρ τ− ∂

∂
= Ĥ( ) ( )0 (7)

The initial state ρ(0) at infinitely high temperature is a locally
maximally entangled state ρ σ σ= ∏ ∑ | ⟩⟨ |σ(0) i d i i

1
i

, which is

easily represented by an MPO withM = 1.12,36 In this work, we
adopt the time-dependent variational principle based variable
mean field algorithm (TDVP-VMF) for imaginary time
evolution.38 The time step is adaptively chosen by the
Dormand−Princes 5/4 Runge−Kutta algorithm. To avoid
coping with a non-Hermitian matrix, the imaginary part of the

correction vector, X(ω), fulfills the following real symmetric
and positive definite linear equation:

ω η ω ημρ− + = − ̂ βX(( ) ) ( )2 2 1/2
(8)

Analogous to the zero temperature DDMRG, a Hylleraas-like
functional is defined as

ω ω η η μρ[ ] = { − + + ̂ }β
† †L X X X X( ) Tr (( ) ) 22 2 1/2

(9)

Since the global minimum of L lies exactly at the point where
X(ω) satisfies eq 8, eq 8 could be solved by minimizing

ω[ ]L X( ) . The main advantage of DDMRG compared to CV-
DMRG is that the spectral function could be obtained directly
from the minimal value of ω[ ]L X( ) ,

ω ω πη= − [ ]S L X( ) ( ) /min (10)

Therefore, the error of S(ω) is O(ε2) if X(ω) has error O(ε)
and S(ω) is a lower bound of the exact value.28

In the original DDMRG algorithm, X(ω) and the ground
state wave function share the same set of renormalized basis
using the state-average method.28 We improve this approx-
imation by expressing X(ω) and ρβ

1/2 with two independent

MPOs as the newly proposed DDMRG++.11 X(ω) can be
obtained by solving the uncoupled linear equations
∂ ∂ =σ

−
L A/ 0a ai i

i
1

(eq 11) locally by sweeps following the
philosophy of DMRG.36
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The linear equation is illustrated graphically in Figure 1. The
second improvement we use here is that the high order

moments such as { }ω ω ω| − ̂ | ∂
∂ σX H XTr ( ) ( ) ( )

A0
2

i is exactly

calculated since Ĥ0 is represented by an exact MPO rather than
approximated in the renormalized space ̂ ̂ ̂PH P0 , where

Figure 1. Linear equation ∂ ∂ =σ
−

L A/ 0a ai i
i

1
(eq 11) to optimize the

local site σ
−

Aa ai i
i

1
(in purple) at finite temperature. The operators

ω μ ρ− ̂ ̂ ̂ βH H( ), , , and0 0
1/2 are shown in blue and the correction

vector X(ω) is shown in red.
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present the MPS formulation of DDMRG at zero temperature
in the Supporting Information.
Now we apply DDMRG to investigate the finite temperature

optical spectra for molecular aggregate, as represented by the
Frenkel−Holstein exciton model,
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where εi is the adiabatic excitation energy of the ith molecule,
Jij is the intersite electronic coupling between the ith and jth
molecules, ωin and gin refer to the harmonic frequency and
dimensionless electron-vibrational coupling strength of the nth
normal mode of the ith molecule. The absorption (emission)
cross section is obtained by multiplying the frequency
dependence ω (ω3) as a prefactor separately. For simplicity,
we neglect the aggregate geometry factor and assume that the
orientations of all local transition dipole moments are the
same.
We first examine the accuracy of DDMRG by comparing it

with TD-DMRG on a toy dimer model with one vibrational
mode of frequency ω0 for each molecule with up to 16
vibrational quanta. Benchmarks on the absorption and
emission spectra are carried out in comparison with exact
diagonalization (ED). The exciton-vibrational coupling varies
by adjusting the Huang−Rhys factor (S = g2 ∈ [1.0, 3.0, 5.0]).
J- and H-type aggregates are investigated by setting the
excitonic coupling to be −ω0 and ω0, respectively. The relative
error is defined as

σ ω σ ω
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where {ωi} groups the discrete frequency points and σ(ωi) is
the corresponding line strength. In the TD-DMRG calculation,
we employ the projector splitting evolution scheme10,38 with
time step ω= −td 0.01 0

1 to propagate 10 000 steps. The same
bond dimension M = 120 and Lorentzian broadening η =
0.1ω0 are used in both TD-DMRG and DDMRG. The thermal
equilibrium density matrices at different temperatures are
obtained by imaginary time evolution with the bond dimension
M = 32.
Figure 2 shows that both TD-DMRG and DDMRG are

accurate enough with the relative error less than 6%. DDMRG
is remarkably accurate especially at low temperature (kBT ∈
[0.5ω0, ω0]). At kBT = 2ω0, the accuracy of DDMRG
deteriorates but is still a little bit better than TD-DMRG.
Inspecting X(ω) expanded on the eigenstates,

∑ω
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the loss of accuracy with temperature of DDMRG could be
qualitatively explained by the fact that, at relatively low
temperature, X(ω) only contains a small set of transition pairs |
n⟩⟨m| with large coefficients and thus is easy to be compressed
as an MPO with a small bond dimension M. While at higher
temperature, the set of transition pairs becomes larger and the
compression becomes harder. Therefore, DDMRG is more
suitable for problems in which the vibrations have frequencies
larger than the energy scale of the temperature.
We further look into the regime kBT ≤ ω0, which is usually

the case for the intramolecular vibrations at room temperature.
We study the disorder-free systems composed of linearly
arranged N chromophores with negative nearest-neighbor-only
coupling J0 = −2.5ω0. The Huang−Rhys factor of each
vibration is S = 1. The n-particle approximation approach has
been widely used to investigate the spectral signatures of
molecular aggregates,39−43 and as a compromise between the
accuracy and computational cost, the 2-particle approximation

Figure 2. Relative error of (a) absorption and (b) emission spectra for J- and H- aggregates with different Huang−Rhys factor (S ∈ [1.0, 3.0, 5.0])
across different temperature (kBT ∈ [0.5ω0, ω0, 2ω0]). Note the error of DDMRG at kBT = 0.5ω0 is magnified 50 times to make it clearly visible.
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(2-PA) is the most popular one. We use DDMRG and 2-PA to
calculate the temperature-dependent 0−0 emission I0−0 of the
open boundary systems of different sizes and a 50-site system
with periodic boundary condition in Figure 3a. The bond

dimensions used when doing the imaginary time evolution are
64 for the 50-site system and 32 for smaller systems. The
prefactor of the frequency index is omitted here to focus on the
dimensionless strength alone. 2-PA agrees well with DDMRG
at low temperature and exhibits evident overestimation at high
temperature. To account for this, we study a 5-site system
whose Hamiltonian can be treated by up to 5-PA, which is
equal to ED. The relative errors by different levels of
approximations are presented in Figure 3b. At high temper-
ature, 2-PA exhibits an apparent overestimation, which is
approximately 30% when kBT = ω0. The overestimation can be
reduced by including the higher-particle states, which is only
feasible for small systems. DDMRG achieves comparable
accuracy as the 4-PA with only M = 50. In addition, because of
its variational feature, the results of DDMRG are always the
lower bound of the exact values. The inset of Figure 3b shows
that the result of the simplest 1-PA is much worse than the

others and is not even qualitatively reliable in this 5-site
system. For more details, the whole spectra obtained from
different methods at kBT = 0.05ω0 and kBT = ω0 are shown in
Figure S3. It is also worth mentioning that since n-particle
approximation is a truncated configuration interaction method,
it is not size-consistent and thus is expected to perform worse
for larger systems, as observed in Figure 3a. For completeness,
we also compare DDMRG and 2-PA at the intermediate
excitonic coupling regime J0 = −0.25ω0 and the weak excitonic
coupling regime J0 = −0.025ω0 in the Supporting Information.
A similar trend has been found that DDMRG is more accurate
than 2-PA at high temperature.
As shown in Figure 3a, with the decrease of temperature,

I0−0 initially rises and subsequently levels off because of the
boundary effect, and at high temperature, I0−0 is only related to
the temperature but not to the system size as a result of the
exciton−phonon interaction induced localization. Therefore,
Spano and co-workers proposed to use I0−0 to characterize the
number of coherent molecules at a specific temperature called
the temperature-dependent thermal coherence size, which is
important to the phenomena of superradiance observed in the
molecular aggregates.39,41 Since the information on exciton
coherent length Lρ could be obtained from the reduced density
matrix ρS = TrB(ρβ) by tracing out the vibrational degrees of
freedom, we could investigate the relation between I0−0 and Lρ

directly. We adopt the widely used definition of exciton
coherent length when characterizing the polaron size in the
biological antenna complexes and organic molecular crys-
tals:44−46

ρ

ρ
=

∑ | |

∑ | |ρ
( )

L
N

ij
N

ij

ij
N

ij

S,

2

S,
2

(15)

which measures the variance of ρS. Figure 4 shows that the
temperature dependence of I0−0 and Lρ are almost parallel to

each other in a wide range of excitonic coupling J0, indicating a
nearly linear relationship between the 0−0 emission strength
and the thermal coherent length in the one-dimensional J-
aggregates, which is in accordance with the results calculated
by Toyozawa ansatz.44

Figure 3. (a) 0−0 emission strength I0−0 as a function of T−1/2 when
J0 = −2.5ω0 (A linear relationship with T−1/2 is predicted by strong
excitonic coupling perturbation theory41). Lines with △ are the
results of a 50-site system with periodic boundary condition (M =
120), and the others are with open boundary condition (M = 100).
(b) Relative error of 0−0 emission strength I0−0 of a 5-site system
using n-particle approximation and DDMRG.

Figure 4. Temperature dependence of the exciton coherent length Lρ
and 0−0 emission strength I0−0 for open boundary 50-site models
with different excitonic couplings.
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We further apply DDMRG to simulate the absorption
spectrum of a perylene bisimide (PBI) derivative, which has
become the prototypical molecular aggregates for testing
methodologies in quantum dynamics. Accurate calculations at
zero temperature on the PBI chain using multiconfiguration
time-dependent Hartree (MCTDH) were performed by Kühn
et al.,47,48 followed by the TD-DMRG calculation with
comparable accuracy at zero temperature12,15 and finite
temperature.12 We adopt the same model here and each
molecule has ten modes with frequency from 206 to 1628
cm−1.12,15,48 Figure 5 shows that the absorption spectrum of a
PBI dimer calculated by DDMRG with M = 10(30) at 0 K and
M = 30(50) at 298 K. The results of TD-DMRG12 with M =
42 at 0 K and M = 120 at 298 K are also plotted for
comparison. Though the bond dimension is smaller, DDMRG
obtains a higher resolution and more smooth spectrum than
TD-DMRG, especially at finite temperature. One of the
reasons is that the frequencies of intramolecular vibrations of
PBI are larger than the energy scale of room temperature
which is favored by DDMRG, as shown in Figure 2. Second,
the resolution of the spectrum could be systematically
improved by increasing the number of frequency points in
DDMRG. The Δω between the neighboring frequency points
in DDMRG calculation is 3.3 cm−1. For TD-DMRG to achieve
this kind of resolution, the total evolution time is at least 10 ps,
which is pretty difficult if not impossible not only in terms of
accuracy but also in computational cost.
DDMRG is generally considered to be computationally

expensive since many frequency points have to be calculated.
However, it is perfectly scalable because each of them is
independent and thus could be easily parallelized on the
modern supercomputer with hundreds and thousands central
processing unit (CPU) cores. Besides this trivial parallelization,
the graphical processing unit (GPU) has shown its great
potential in accelerating the heavy tensor contraction in
DMRG.38 We focus on the latter below and adopt a CPU-
GPU heterogeneous parallelization strategy in which GPU is
responsible for the tensor contraction shown in eq 11 and
Figure 1 and CPU is responsible for the matrix decomposition.

A calculation of 50-site Holstein model with M = 50 is timed
by the CPU-only scheme (1 core) and by the GPU-accelerated
scheme. Figures 6a,b present the time cost of each frequency at
kBT = 0 and kBT = ω0. At T = 0, CPU-GPU heterogeneous
computation is able to speed up the calculation 5 times on
average and 7 times for the most time-consuming point. Better
still, the acceleration at finite temperature is more remarkable
with 51 times on average and 63 times for the most time-
consuming point. Notably, the time cost is evidently different
for different frequencies. The calculation of the resonant
frequency tends to be more difficult because of the larger
condition number of eq 11, requiring more steps of iteration to
converge.49 In this CPU-GPU heterogeneous calculation, the
imaginary time evolution with M = 64 takes about 20% of the
total computational time. Although the acceleration for
different systems and bond dimensions shall be different,
such a test case is able to demonstrate that the algorithm of
DDMRG could be largely accelerated by the CPU-GPU
heterogeneous parallelization.
To conclude, for the first time we generalize the dynamical

density matrix renormalization group from zero temperature
formalism to finite temperature formalism. The new algorithm
with matrix product states/operators is more accurate in
representing the correction vector and calculating the high-
order moments of operators. The superiority of the frequency
domain DDMRG over the time domain approach has been
demonstrated by simulating the optical spectroscopy of
vibronic models ranging from the simple dimer model to the
real-world PBI molecular aggregate. The near-linear relation-
ship between the thermal equilibrium exciton coherent length
and 0−0 emission strength of the one-dimensional J-aggregates
is verified by this highly accurate method. Moreover, the
significant acceleration after adopting CPU-GPU heteroge-
neous parallelization strategy makes DDMRG more promising
for large scale systems. We highlight the important features of
DDMRG: (i) The resolution and accuracy of the spectrum
could be systematically improved: more smooth spectrum is
obtained by calculating more frequency points and the
variational formulation guarantees the convergence for the

Figure 5. Absorption spectrum calculated by DDMRG and TD-DMRG (a) at 0 K and (b) at 298 K. For DDMRG, the Lorentzian broadening
width is η = 2 cm−1. The result of TD-DMRG is from ref 12.
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response intensity by merely increasing the bond dimension.
(ii) It allows calculations of an arbitrary window in the
frequency domain, e.g., the charge mobility can be obtained by
calculating the response at ω = 0 with Green−Kubo formula.50

(iii) The algorithm is perfectly scalable on the modern
distributed supercomputer.
Finally, we make some comments on the time domain

approach TD-DMRG. TD-DMRG is a numerically exact and
robust method suitable for ultrafast dynamics and is
irreplaceable when real-time information is necessary. But
like all the other quantum dynamics methods in the time
domain, TD-DMRG is still hard to do accurate long-time
propagation due to the enhanced entanglement as time
propagation goes. The frequency domain DDMRG can
naturally avoid such a problem and provides a reliable and
accurate routine to compute the dynamical properties.
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(16) Schröder, F. A.; Turban, D. H.; Musser, A. J.; Hine, N. D.;
Chin, A. W. Tensor network simulation of multi-environmental open
quantum dynamics via machine learning and entanglement renorm-
alisation. Nat. Commun. 2019, 10, 1062.
(17) Xie, X.; Liu, Y.; Yao, Y.; Schollwöck, U.; Liu, C.; Ma, H. Time-
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