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Abstract
Density matrix renormalization group (DMRG) and its time-dependent variants have found
widespread applications in quantum chemistry, including ab initio electronic structure of
complex bio-molecules, spectroscopy for molecular aggregates, and charge transport in bulk
organic semiconductors. The underlying wavefunction ansatz for DMRG, matrix product state
(MPS), requires mapping degrees of freedom (DOF) into a one-dimensional topology. DOF
ordering becomes a crucial factor for DMRG accuracy. In this work, we propose swapping
neighboring DOFs during the DMRG sweeps for DOF ordering, which we term ‘on the fly
swapping’ (OFS) algorithm. We show that OFS is universal for both static and time-dependent
DMRG with minimum computational overhead. Examples are given for one dimensional
antiferromagnetic Heisenberg model, ab initio electronic structure of N2 molecule, and the
S1/S2 internal conversion dynamics of pyrazine molecule. It is found that OFS can indeed
improve accuracy by finding better DOF ordering in all cases.

Keywords: density matrix renormalization group, ordering, degree of freedom, quantum
chemistry, quantum dynamics, vibronic model

(Some figures may appear in colour only in the online journal)

1. Introduction

Density matrix renormalization group (DMRG) is originally
proposed for strongly correlated one dimensional lattice model
by White [1, 2]. It was quickly generalized to quantum
chemistry with semiempirical long-range Coulomb potential
demonstrating surprisingly high accuracy by Shuai, Ramase-
sha and Fano et al [3–5]. Then DMRG for ab initio quantum
chemistry was later explored in 1999 by White and Martin
[6]. After two decades of development, DMRG has become
one of the mainstream methods in quantum chemistry [7–9]
thanks to the efforts made by Chan, Reiher, Kurashige and Ma
et al [10–13]. The success of DMRG can be ascribed to its
underlying ansatz, namely matrix product state (MPS), which
satisfies the area law [14]. Apart from static DMRG that targets

∗ Author to whom any correspondence should be addressed.

the ground state or low-lying excited states, time-dependent
DMRG (TD-DMRG) [15–19] has also received much atten-
tion in recent years [20–23]. The projector-splitting (PS) time
evolution scheme [24], based on time-dependent variational
principle (TDVP) [25, 26], has enabled accurate simulation of
a variety of chemical properties, such as the spectra of molec-
ular aggregates [27], singlet fission dynamics in molecular
dimers [28], and charge mobility of organic semiconductors
[29, 30]. However, numerically exact DMRG simulation is
still quite time-consuming, even with massive parallelism over
CPU and GPU [31–34]. How to simulate larger systems with
limited computational resources is one of the central topics of
DMRG studies [35, 36].

The MPS ansatz requires an ordering of the degree of
freedoms (DOFs) of the system and the DOF ordering is a
determining factor for the efficiency of DMRG. For one
dimensional lattice models, the optimal DOF ordering for MPS
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is according to the geometry of the chain structure. If the bipar-
tition of the MPS chain corresponds to a bipartition of the one
dimensional lattice, then according to the area law the MPS
ansatz is able to express the ground state of any gapped lat-
tice Hamiltonian with polynomial number of parameters. Even
for the long-range Coulomb potential with density-density
type terms such as Pariser–Parr–Pople Hamiltonian with only
nearest-neighbor hopping integrals, Shuai et al demonstrated
that DMRG is almost as accurate as the short-ranged Hubbard
model [3]. Nevertheless, the application of DMRG to general
models with nonlocal interaction, such as momentum-space
DMRG [37] or DMRG in two-dimensional lattice [38], brings
about the problem of DOF ordering. Recently, tree tensor net-
works appear as useful extensions of DMRG, and the problem
of finding an optimal tree topology is analog to the optimal
DOF ordering problem in DMRG [39–42]. Intuitively, the
strongly entangled DOFs should be arranged as close as pos-
sible. In the context of quantum chemistry, the DOF ordering
problem is especially prominent with the molecular orbitals
as DOFs. There have been extensive investigations along this
direction [43–49]. Roughly speaking, the existing strategies
can be classified into two categories. The first category is to
derive DOF ordering according to the single-electron or two-
electron integrals that appear in the ab initio electronic Hamil-
tonian. The second category is to order DOFs according to the
information extracted from trial DMRG calculations. In both
categories, a common strategy is to firstly establish the entan-
glement between DOFs and then use reversed Cuthill–Mckee
(RCM) algorithm [43], the Fiedler vector [47, 48], genetic
algorithm (GA) [48] or simulated annealing [46] to group
strongly entangled DOFs in the DOF ordering. For the two cat-
egories, the exchange integral and the mutual information are
the most frequently used metrics to characterize the entangle-
ment respectively. For the second category, it is also possible
to directly optimize DOF ordering using GAs taking DMRG
optimized energy as the evolution criteria [45]. The computa-
tional overhead for the first category is negligibly small and
they are used routinely in DMRG calculations [7, 9, 50, 51].
Yet the resulting orderings are usually not as good as the order-
ings by the second category methods [45]. Consensus has been
reached in the community that finding the globally optimal
ordering for a general Hamiltonian is quite difficult. The search
space for the DOF ordering scales as O(N!) where N is the
total number of DOFs and in general cases it is highly non-
trivial to judge whether a given DOF ordering is better than
another one.

To date, there is hardly any effort on the DOF ordering
for TD-DMRG quantum dynamics, in particular the vibronic
problem. In vibronic problem the size of the basis set varies
with DOFs. Phonon DOFs that have low frequency and are
strongly coupled with other DOFs require larger basis set. It is
recently suggested by Ma et al that the size of the local basis
set should also be taken into account for optimal DOF order-
ing, along with the entanglement considerations [28]. For effi-
cient two-site TDVP-PS time evolution, it should be avoided
to arrange phonon DOFs with large basis set next to each other.

Such complication makes finding an optimal DOF ordering
even more challenging.

In this work, we propose an algorithm, on the fly swapping
(OFS), for DOF ordering optimization. OFS complements the
existing two categories of DOF ordering strategies mentioned
above because it can exploit the information retrieved during
DMRG optimization and at the same time spares the compu-
tational overhead. OFS can also take the effect of the basis
set sizes into consideration. The key idea behind OFS is to
swap neighboring DOFs during the DMRG sweeping process
according to a certain loss function, such as the bipartite von
Neumann entanglement entropy. OFS can be applied to any
models and is compatible with both static DMRG and TD-
DMRG. We demonstrate OFS can help find optimized DOF
ordering in a variety of examples, including spin- 1

2 one dimen-
sional antiferromagnetic Heisenberg model, ab initio elec-
tronic structure of N2 at dissociation bond length, and the S1/S2

internal conversion dynamics for the pyrazine molecule. The
examples are versatile in nature and demonstrate the proposed
OFS is a general method for DOF ordering optimization.

2. The on the fly swapping (OFS) algorithm

2.1. Brief overview of matrix product states

The MPSs and matrix product operators represent the wave-
function of many-body system |Ψ〉 with overall N DOFs as
well as corresponding operators Ô as the product of a series of
matrices [1, 14]

|Ψ〉 =
∑

{a},{σ}
A[1]σ1

a1
A[2]σ2

a1a2
. . .A[N]σN

aN−1
|σ1σ2 . . . σN〉, (1)

O =
∑

{w},{σ},{σ′}
W[1]

σ′1,σ1
w1 W[2]

σ′2,σ2
w1w2 . . .

× W[N]
σ′N ,σN
wN−1 |σ′

1σ
′
2 . . . σ

′
N〉〈σNσN−1 . . . σ1|. (2)

|σi〉 is the basis for each DOF. A[i]σi
ai−1ai

and W[i]
σ′i ,σi
wi−1wi are

numerical matrices in the chain. Here i in the square bracket is
the label for the DOF, and the ordering of the A and W in the
MPS/MPO representation is implied by the sequence of mul-
tiplication. The dimension of ai and wi is called (virtual) bond
dimension, while the dimension of σi is called the size of the
physical index. For MPS and MPO, the virtual bond dimen-
sion is denoted as MS and MO respectively, and the the size
of the physical index is denoted as d. For certain applications
of MPS such as ab initio electronic structure it is essential to
exploit the sparsity of W. In this work, we do not consider such
complication for a unified treatment of all models.

The MPS parametrization for a given state is not unique,
and in practice mixed/left/right-canonical MPS are commonly
used. A mixed-canonical MPS with the gauge center at the nth
site can be written as:
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|Ψ〉 =
∑

{l},{r}{σ}
L[1]σ1

l1
. . . L[n − 1]σn−1

ln−2ln−1
C[n]σn

ln−1rn

× R[n + 1]
σn+1
rnrn+1 . . .R[N]σN

rN−1
|σ1σ2 . . . σN〉 (3)

where Lσi
li−1li

and R
σ j
r j−1r j satisfy orthonormal condition:

∑
σi,li−1

Lσi∗
li−1l′i

Lσi
li−1li

= δl′i li
, (4)

∑
σ j,r j

R
σ j∗
r′j−1r j

R
σ j
r j−1r j = δr′j−1r j−1

. (5)

Here the superscript stars represent complex conjugation.
For brevity, in this article we will not outline the detailed

algorithm for static ground state DMRG and TD-DMRG.
Rather, we only focus on a common sub-routine of the algo-
rithms that are relevant to OFS, which is the decomposition
of a two-site tensor. Readers are referred to several excellent
reviews [14, 20, 21, 52] for more context. We note that the
OFS framework can also be generalized to dynamical DMRG
in frequency domain [53, 54] quite straightforwardly, which
we will not discuss in detail in this work.

In a left-to-right sweep of two-site static ground state
DMRG, the gauge center is moved from 1 to N − 1, and the
local tensors are updated along the way. Suppose during one
sweep the gauge center is at the ith site, in order to update C[i]
and R[i + 1], the computationally heavy step is to solve the
eigenvalue problem:

∑
li−1,σi ,σi+1,ri+1

H[i, i + 1]
σ′iσi,σ

′
i+1σi+1

l′i−1li−1,r′i+1ri+1
C[i, i + 1]

σi,σi+1
li−1ri+1

= EC[i, i + 1]
σ′i ,σ

′
i+1

l′i−1r′i+1
(6)

where H[i, i + 1], the effective Hamiltonian, is defined as:

H[i, i + 1]
σ′iσi ,σ

′
i+1σi+1

l′i−1 li−1,r′i+1ri+1
=

∑
{w}

h[1 : i − 1]{l′ ,w,l}i−1
W[i]

σ′i ,σi
wi−1wi

× W[i + 1]
σ′i+1,σi+1
wiwi+1 h[i + 2 : N]{r′ ,w,r}i+1

,

(7)

where

h[1 : i − 1]{l′,w,l}i−1 =
∑

{l′},{w},{l}
h[1]{l′,w,l}1 . . .

× h[i − 1]{l′,w,l}i−2,{l′,w,l}i−1 , (8)

h[i + 2 : N]{r′,w,r}i+1 =
∑

{r′},{w},{r}

× h[i + 2]{r′,w,r}i+1,{r′ ,w,r}i+2 . . .

× h[N]{r′,w,r}N−1 , (9)

h[i]{a′,w,a}i−1,{a′,w,a}i =
∑
σi,σ′i

A[i]
σ′i∗
a′i−1a′i

W[i]
σ′i ,σi
wi−1wi A[i]σi

ai−1ai

(A = L or R, a = l or r).

Then, the resulting four-legged tensor C[i, i + 1] is decom-
posed by SVD

C[i, i + 1]
σi,σi+1
li−1ri+1

=
∑
j, j ′

Uli−1σi, js j j ′V j ′,σi+1ri+1 (11)

where s j j′ = s jδ j j′ are the singular values and satisfy∑
js

2
j = 1 for normalized C[i, i + 1]. We assume s j is

sorted such that s j � s j+1. Generally speaking, the SVD
decomposition has two purposes. The first is to move the
gauge center from the ith site to the (i + 1)th site, by setting
L[i]σi

li−1li
= Uli−1σi, j and C[i + 1]

σi+1
liri+1

=
∑

j ′s j j ′V j ′,σi+1ri+1

with appropriate reshaping. And the second purpose is to
compress the MPS wavefunction by truncating the singular
values according to certain criteria. Suppose the compression
strategy is to retain only the largest MS singular values,
then after moving the gauge center to the (i + 1)th site the
bond dimension between the ith site and the (i + 1)th site is
simply MS.

The algorithm for two-site TDVP-PS time evolution shares
a lot in common with the two-site static DMRG algorithm. In
a left-to-right sweep, suppose the gauge center is at the ith site,
the forward time evolution for C[i] and R[i + 1] is carried out
according to

i
∂C[i, i + 1]

σ′i ,σ
′
i+1

l′i−1r′i+1

∂t
=

∑
li−1,σi,σi+1,ri+1

H[i, i + 1]
σ′iσi,σ

′
i+1σi+1

l′i−1li−1,r′i+1ri+1

× C[i, i + 1]
σi,σi+1
li−1ri+1

(12)

where the initial value for C[i, i + 1] is∑
ri

C[i]σi
li−1ri

R[i + 1]
σi+1
riri+1 . Then, similar to static DMRG

algorithm, the updated C[i, i + 1] is decomposed by SVD
to move the gauge center and compress the wavefunction.
We note that different from the static DMRG algorithm,
in TDVP-PS it is necessary to carry out ‘backward time
evolution’, however, this step of the TDVP-PS algorithm is
irrelevant to OFS, at least in the two-site case. We would
like to mention here that there exists a number of different
TD-DMRG time evolution schemes and some of them are
quite different from the two-site TDVP-PS algorithm [21], yet
the TDVP-PS algorithm seems to be the most popular choice
among recent studies [27–31, 55, 56].

In both static ground state two-site DMRG algorithm and
the two-site TDVP-PS time evolution algorithm, one of the
key steps is to perform SVD over the updated two-site tensor
C[i, i + 1], specified in equation (11). In order to prevent the
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computational cost of the DMRG algorithms from exponential
explosion, it is compulsory to compress the MPS wavefunction
according to the singular values s j, based on either predefined
bond dimension or truncation threshold, so that only the largest
singular values are reserved. In the following we assume s j is
truncated to the largest MS singular values, while generaliza-
tion to other truncation schemes is straightforward. If the MPS
wavefunction before the truncation is |Ψ〉 and the MPS wave-
function after the truncation is |Φ〉, then the error induced by
the truncation can be measured by

‖Φ−Ψ‖2 = 1 −
MS∑
j=1

s2
j =

NS∑
j=MS+1

s2
j (13)

where NS = MSd is the number of singular values. The error
introduced in this step, albeit controllable, is arguably the most
important source of error for two-site static DMRG algorithm
and TDVP-PS time evolution algorithm. The efficiency for the
approximation is closely related to the bipartite von Neumann
entanglement entropy

S = −
∑

j

s2
j ln s2

j . (14)

If S is large, sj tend to be uniformly distributed, resulting in rel-
atively large truncation error. If S is small, then s j tends to have
an unbalanced distribution, resulting in a relatively small trun-
cation error. In general, a good DOF ordering that minimizes
S reduces the truncation error, while a bad DOF ordering with
large S is harmful to accuracy. In order to reduce S the most
entangled DOFs should be arranged closely in the linear chain,
however, it is not straightforward to implement this philoso-
phy for general models, where there’s little physical intuition
on which DOFs are most strongly entangled.

2.2. On the fly swapping (OFS) for optimized DOF ordering

The key idea behind OFS is the observation that the bipartite
entanglement entropy between the ith site and the (i + 1)th site
usually changes upon swapping the DOF for the ith site and the
DOF for the (i + 1)th site. For example, consider the following
state in the basis of |li−1σiσi+1ri+1〉 for the C[i, i + 1] tensor:

|Ψ〉 = 1
2

(
|0000〉+ |1010〉+ |0101〉+ |1111〉

)
. (15)

In this case, we have s j =
1
2 for 1 � j � 4 and s j = 0 oth-

erwise, and thus S = 2 ln 2. If the DOFs on the ith site and
the (i + 1)th site are allowed to be swapped, such that |Ψ〉 is
expressed in the |li−1σi+1σiri+1〉 basis, then

|Ψ〉 = 1
2

(
|00〉+ |11〉

)
⊗
(
|00〉+ |11〉

)
(16)

and the corresponding bipartite entanglement entropy S
between the ith site and the (i + 1)th site is zero. To exploit
this possibility of reducing entanglement entropy, we propose
to firstly permute the indices of C[i, i + 1]

C[i + 1, i]
σi+1,σi
li−1ri+1

≡ PermuteIndex
(

C[i, i + 1]
σi,σi+1
li−1ri+1

)
(17)

and then carry out SVD for C[i + 1, i]

C[i + 1, i]
σi+1,σi
li−1ri+1

=
∑
j, j ′

U′
li−1σi+1, js

′
j j ′V

′
j ′,σiri+1

(18)

in addition to the decomposition in the traditional workflow
equation (11). The bipartite entanglement entropy S for the
two sets of singular values s j and s′j are denoted as S and S′

respectively. If S′ < S, then swapping the DOFs results in a
lower entanglement entropy, and the DOF ordering after the
swapping is more favoured compared to the original ordering.
The tensor at the ith site L[i] is then set to U′

li−1σi+1, j (again tak-
ing left-to-right sweep as an example), and now it represents
the DOF originally at the (i + 1)th site. Meanwhile, the ten-
sor at the (i + 1)th site C[i + 1] is set to

∑
j ′s

′
j j ′V

′
j ′,σiri+1

. The
resulting MPS has the DOFs at the ith site and the (i + 1)th
site swapped, with improved accuracy after truncated to MS

largest singular values compared to the original DOF order-
ing. The same swapping should be performed to Hamilto-
nian MPO before the iterative MPS algorithm proceeds to the
next site. An efficient and accurate DOF swapping algorithm
for MPO will be introduced in section 2.3. If S � S′, then
the original DOF ordering is fine and nothing needs to be
done. If the SVD truncation is performed according to sin-
gular value threshold instead of pre-defined MS, so that MS

is adjusted dynamically, then OFS should be able to find the
DOF ordering that results in a lower bond dimension. One
of the main features of the proposed algorithm is that the
DOF ordering optimization is taken place during the sweeps,
thus we term this algorithm as OFS. Apparently, the compu-
tational scaling for OFS does not exceed the overall scaling
for vanilla static DMRG and TD-DMRG. Moreover, the over-
head caused by an additional SVD decomposition is small
for reasonably large MO, since the computational bottleneck
resides in the evaluation equations (6) and (12), which scale
as O(M3

SMOd2 + M2
SM2

Od3) with a prefactor for the number of
iterations, while the SVD of C[i, i + 1] scales atO(M3

Sd3). Fur-
thermore, the two SVD decompositions over C[i, i + 1] and
C[i + 1, i] can be performed in perfect parallel. In this regard,
the computational overhead is negligible. We note that it is
only meaningful to carry out the swapping on the fly, because
after the truncation the system wavefunction is actually biased
toward the current DOF ordering, and at this stage the relative
entanglement before and after swapping is not reliable.

The swapping criteria based on bipartite entanglement
entropy S is straight-forward, however, S is only ‘closely
related to’ the error induced by the truncation. The exact mea-
surement for the error is the sum of the discarded singular
values D, as indicated by equation (13):

D ≡
NS∑

j=MS+1

s2
j . (19)

We note that S < S′ does not guarantee D < D′ for all possi-
ble values of MS. The bipartite entanglement S before and after
the swapping is not a function of the truncation bond dimen-
sion MS. Meanwhile, the truncation error D before and after
the swapping is dominated by MS. From this point of view,
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D can be regarded as a variant of S that is tailored for the
current truncation bond dimension MS. Thus, both S and D
can serve as indicators to decide if it is worthwhile to swap
the DOFs at the ith site and the (i + 1)th site. Other possible
alternatives include Rényi entropies [57]. More generally, we
can design loss function L as the swapping criteria, and swap
the DOFs when L′ < L. L may not only include information
from the entanglement point of view, but also include other
aspects of DOF ordering, such as the distribution of the sizes
of the physical index d, the MPO bond dimension MO, or even
computational overhead. For example, static DMRG for vibra-
tional models [58] may employ the following strategy to take
the effect of physical basis size into consideration. During the
first a few rounds of sweeps, when the bond dimension MS

is typically small, use the entanglement entropy as the swap-
ping criteria. And before moving on to the large MS limit, add
the product of the sizes of the physical index of adjacent sites
into the loss function such that the large MS limit calculation
is affordable. In this work, we focus on reducing entanglement
entropy. In figure 1 we present a schematic illustration of the
OFS approach.

If L is set to S, we denote this approach as OFS-S:

LOFS−S = S. (20)

If L is set to D, we denote this approach as OFS-D:

LOFS−D = D. (21)

Although LOFS−D seems to measure the truncation error accu-
rately, it does not work well at the sites that are close to the
boundary of the MPS. At these sites, because the Hilbert space
of one side of the environment is actually rather small, there’s
virtually no truncation error regardless of how local DOFs are
ordered. On the contrary, S is still able to correctly predict the
ordering with smaller entanglement entropy in this case. To
deal with this situation, we propose a hybrid loss function:

LOFS−D/S =
S if D < ξ and D′ < ξ

D otherwise
(22)

that tries to combine the advantages of both LOFS−D and
LOFS−S. Here ξ is a pre-defined small threshold and for the
results reported in this article we set ξ = 10−10.

It is instructive to compare the OFS approach with on
the fly local basis optimization [35]. The authors propose to
apply a unitary transformation U over the physical indices to
C[i, i + 1] during the static DMRG sweeping process in order
to reduce entanglement between DOFs:

C[i, i + 1]
σ′i ,σ

′
i+1

li−1ri+1
=

∑
σi ,σi+1

U
σ′i ,σ

′
i+1

σi,σi+1 C[i, i + 1]
σi,σi+1
li−1ri+1

. (23)

The unitary transformation U acts as a ‘disentangler’. For-
mally, the OFS approach introduced here can be viewed as a
special case for the local basis optimization algorithm, where
U is restricted to be a swap gate Uswap. However, the simplicity
of OFS has earned it at least three advantages against the local
basis optimization approach: (1) swapping the MPS and the
MPO has a lower scaling and smaller computational cost than

finding and applying an optimal U; (2) the overall ordering
after several iterations is more interpretable than the optimized
basis encoded in a set of U; (3) the design ofL is more flexible.

Generally, L has a lot of local minimums, and a simi-
lar problem is also reported for the local basis optimization
approach [35]. Thus, it is highly unlikely that OFS is able
to find out the globally best DOF ordering given a moderate
initial guess. Yet, the OFS approach is orthogonal to exist-
ing DOF ordering schemes and has minimal computational
overhead. Therefore, we can always expect OFS to improve
the DOF ordering, in combination with other DOF ordering
methods or simply physical intuition, almost for free. One
of the most promising combinations is to integrate OFS with
the GA that takes DMRG optimized energy as the evolution
criteria [45]. OFS should speed up the convergence of GAs
and the crossovers/mutations in GAs can help to avoid local
minimums in OFS.

2.3. Symbolic MPO DOF swapping

Swapping the DOF ordering in MPS requires the DOF order-
ing in the corresponding Hamiltonian MPO to be swapped
accordingly:

W ′[i + 1]W ′[i] = W[i + 1, i] = Uswap (W[i]W[i + 1]) Uswap.
(24)

Note that we use the index in the square brackets to label
DOFs rather than the order of the DOFs in the MPO repre-
sentation, while the latter (the order of the DOFs) is implied
by the order of the multiplication. For general MPO, the
swap gates will increase the MPO bond dimension, and com-
putationally expensive numerical compression is required to
maintain the computational scaling. Besides, as we shall
discuss in section 3.2, sometimes it is required to change
the ‘Hamiltonian’ on the fly, which cannot be accomplished
straightforwardly by equation (24).

Another naïve solution is to reconstruct the whole MPO
once the DOF ordering is updated. Because we do not pose
any constraints to the model, to the best of our knowledge
the automatic MPO construction algorithm [59] is the optimal
choice for MPO construction under arbitrary DOF ordering.
This approach is inefficient in two ways. First, reconstructing
MPO takes time, especially when the MPO is rather compli-
cated, such as ab initio Hamiltonian. Second, the local W ten-
sors might have changed for the sites that are not swapped,
since the optimal MPO representation for any operator is usu-
ally not unique. The change of W means previously calcu-
lated h[1 : i] and h[i : N] become out-dated and should also be
re-calculated, which is unfavorable in DMRG algorithms.

Here we propose an efficient and accurate approach to
the MPO DOF swapping problem using the idea of symbolic
MPO. Following the notation in reference [59], the symbolic
MPO representation of any operators in a sum-of-products
(SOP) form can be written as

Ô =
∑
{z}

γz1z2...zN ẑ1ẑ2 . . . ẑN (25)

5
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Figure 1. Schematic illustration of the OFS approach. During the sweeping iteration in both static DMRG and TD-DMRG it is necessary to
decompose the coefficient tensor C[i, i + 1] by SVD. We propose to perform an additional SVD decomposition after swapping the DOFs
then decide if such swapping should be adopted by minimizing the loss function L. Then the DMRG algorithm sweeps to the next site for
another iteration.

=
∑

{w},{z}
W[1]z1

w1
W[2]z2

w1w2
. . .W[N]zN

wN−1
ẑ1ẑ2 . . . ẑN (26)

=
∑
{w}

Ŵ[1]w1Ŵ[2]w1w2 . . . Ŵ[N]wN−1 , (27)

where {ẑi} represents the elementary operators of each local
DOF and γz1z2...zN is the prefactor for each term, commonly
very sparse. This form of operator is similar to equation (2)
except that the matrix elements for Ŵ[i]wi−1wi are symbolic

operators while W[i]
σ′i ,σi
wi−1wi is a numeric tensor.

Imagine the MPO chain is cut between the (i − 1)th and
the ith site, or equivalently at bond wi−1, the operator Ô can be
represented by operators assembled at the left block and the
right block of the MPO after the cutting

Ô =
∑
wi−1

Ŵ[1 : i − 1]wi−1Ŵ[i : N]wi−1 (28)

with the left/right block operator

Ŵ[1 : i − 1]wi−1 =
∑

{w j|1� j<i−1}
Ŵ[1]w1 . . . Ŵ[i − 1]wi−2wi−1

(29)

Ŵ[i : N]wi−1 =
∑

{w j|i� j<N}
Ŵ[i]wi−1wi . . . Ŵ[N]wN−1 . (30)

It is evident from the above definition that Ô can also be written
as:

Ô =
∑

wi−1,wi ,wi+1

Ŵ[1 : i − 1]wi−1Ŵ[i]wi−1wi

× Ŵ[i + 1]wiwi+1Ŵ[i + 2 : N]wi+1 . (31)

For brevity, we denote the set of operators in the left/right block
when cutting between the (i − 1)th site and the ith site as

Wi−1 = {Ŵ[1 : i − 1]wi−1}, (32)

i−1W = {Ŵ[i : N]wi−1}. (33)

Suppose we wish to swap DOF i and i + 1, located at
site i and i + 1, we actually aim to determine the local sym-
bolic matrices at site i and site i + 1 after the swapping,

denoted as Q̂[i + 1]wi−1wi and Q̂[i]wiwi+1 respectively, with
Wi−1 and i+1W already known from the initial optimal MPO
construction:

Ô =
∑

wi−1,wi ,wi+1

Ŵ[1 : i − 1]wi−1Q̂[i + 1]wi−1wi

× Q̂[i]wiwi+1 Ŵ[i + 2 : N]wi+1 . (34)

Q̂[i + 1] and Q̂[i] are required to possess minimal |wi|, the
dimension of wi.

There are many possible approaches to this constrained
optimization problem, and perhaps the most efficient and easy-
to-implement algorithm is to interface with the existing opti-
mal MPO construction algorithm [59] and reuse the code.
Toward this goal, equation (31) is partially expanded into the
SOP form:

Ô =
∑

zL ,zi ,zi+1,zR

γzLzizi+1zR ẑLẑiẑi+1ẑR (35)

with {ẑL} = Wi−1 and {ẑR} = i+1W . In other words, the
assembled operators Wi−1 and i+1W are recognized as ele-
mentary operators for imaginary sites positioned at i − 1 and
i + 2. Then, the ith DOF and the (i + 1)th DOF in the SOP
representation are swapped

Ô =
∑

zL ,zi ,zi+1,zR

γzLzizi+1zR ẑLẑi+1ẑiẑR (36)

where we have assumed, as in the case of MPOs, the oper-
ators for different DOFs commute, and we will discuss the
non-commuting case for fermions in section 3.2. Equation (36)
can be efficiently transformed into a four-site MPO with mini-
mal bond dimension in exactly the same form as equation (34)
using the existing optimal MPO construction algorithm.
Q̂[i + 1] and Q̂[i] correspond to the two sites at the mid-
dle of the four-site MPO. Additional trivial matrix permuta-
tion might be required to ensure the indices wi−1 and wi+1

for Q̂[i + 1]wi−1wi and Q̂[i]wiwi+1 are in the desired order. In
the worst case scenario, this symbolic MPO DOF swapping

algorithm scales atO(M
5
2
O ) using the Hopcroft–Karp algorithm

[60], negligible for DMRG algorithms.

6



J. Phys.: Condens. Matter 34 (2022) 254003 W Li et al

3. Experiments and discussion

In this section, we present our numerical simulation results
to evaluate the performance of the OFS schemes. All simu-
lations are performed using the Renormalizer package [61].
In our implementation particle number conservation is explic-
itly enforced. More specifically, we track the quantum num-
ber of each renormalized basis as well as the physical basis
and SVD is performed within each symmetry block. Mean-
while, the MPS and MPO are stored in the dense form. The
OFS algorithm proposed in this work fully respects the parti-
cle number conservation symmetry. The SVD decompositions
before and after the swapping are carried out in the same fash-
ion. The symbolic MPO swapping algorithm ensures that good
quantum number can be assigned to each normal and com-
plementary operator based on the quantum number of each
elementary operator. For non-Abelian groups such as SU(2)
how to perform OFS deserves further investigation.

3.1. One dimensional Heisenberg model

We first test the OFS algorithm in a spin- 1
2 one dimensional

antiferromagnetic Heisenberg model:

Ĥ/J =
1
4

∑
i

[X̂iX̂i+1 + ŶiŶ i+1 + ẐiẐi+1]. (37)

Here X̂, Ŷ and Ẑ are Pauli matrices and J > 0 is the coupling
constant. The one dimensional Heisenberg model is one of the
initial applications of DMRG [2]. With moderate computa-
tional cost the ground state energy can be obtained at machine
precision. The ordering problem for this model is trivial, in that
the optimal ordering is equal to the spin index or its reversion.
This kind of one dimensional spin lattice model is suitable for
evaluating DOF ordering algorithms since the globally optimal
solution is known. In the following we simulate the Heisen-
berg model with 32 spin sites and open boundary condition,
for which the exact E/J with Bethe ansatz is −13.997 3156.
The DMRG sweeps are performed for 25 rounds starting from
random initial guesses with the warm-up algorithm [62].

For a given bond dimension MS, we randomly generate 64
different DOF orderings, and then compare the lowest energy
during the sweeps with or without OFS. Note that when com-
paring different ordering schemes both the initial DOF order-
ing and the wavefunction initial guess are the same. The results
are summarized in figure 2. The error bar indicates the stan-
dard deviation of the E/J distribution. For reference, con-
verged DMRG energy with optimal ordering, which can be
considered as the numerically exact result, are also included
in figure 2. For example, when MS = 32, E/J is determined
to be −13.997 3153, in close agreement with the exact solu-
tion. With MS from 16 to 64, randomly ordered DOF yields
far inferior E/J than the optimal ordering, and convergence
with respect to MS is slow, implying the importance of DOF
ordering in these systems. The OFS schemes are able to ame-
liorate the problem. Notably, E/J obtained with OFS schemes
at MS = 16 is already more accurate than the MS = 64 results
without OFS. Nevertheless, E/J obtained with OFS schemes
is still nowhere close to the exact solution even at MS = 64.

Figure 2. DMRG optimized energy E/J starting from random
orderings with or without OFS ordering optimization at different
bond dimension MS. For reference E/J obtained with optimal
ordering is also shown, which is very close to the exact result. The
error bar is the standard deviation of E/J distribution.

Figure 3. The number of OFS swaps nswap performed in each
DMRG sweep for the OFS schemes. The error bar is the standard
deviation of the number of OFS swaps.

All three OFS schemes are sensitive to the initial ordering
guess, leading to quite a significant standard deviation. Man-
ual inspection of the ordering optimized by OFS shows that the
arrange of the DOFs is somewhat ‘clustered’ by the algorithm
yet the overall ordering is far from optimal. Several examples
of the optimized ordering are included in appendix A. Within
the OFS schemes, it is found that OFS-D and OFS-D/S per-
form better than OFS-S by a moderate margin. In figure 3
we show the number of OFS swaps (nswap) performed in each
DMRG sweep. It is found that after around 10 sweeps the num-
ber of OFS swaps is approaching zero. So we can conclude that
the OFS orderings are trapped in local minimums. Within OFS
schemes OFS-D performs less swap, as OFS-D is not able to
optimize DOF ordering at the boundary of the MPS chain.

3.2. Ab initio electronic structure of N2

The second-quantized Hamiltonian for general chemical sys-
tem reads:

Ĥ =
∑

i j

ti jĉ
†
i ĉ j +

∑
i jkl

vi jklĉ
†
i ĉ

†
jĉkĉl. (38)

i, j, k, l are indices for spin-orbital. ti j is the single-electron
integral and vi jkl is the two-electron integral. In contrast to the

7
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Heisenberg model discussed in section 3.1, the optimal DOF
ordering for the ab initio Hamiltonian equation (38) cannot
be read out directly. One of the feasible approaches in deter-
mining a good ordering is to arrange strongly correlated DOFs
as close as possible, which is determined semi-empirically by
the integrals ti j and vi jkl. In this regard, ti j is a suitable metric
since it is a symmetric matrix with exactly two indices. The
four-indexed two-body integrals need to be somewhat com-
pressed before the interaction pattern can be extracted. Two
possible candidates for the compression are the Coulomb inte-
gral Ji j = (ii| j j) and exchange integral Ki j =

(
i j| ji

)
. Here i

and j are indices for spatial-orbital. Suppose the matrix chosen
as the interaction metric is Mi j, a lot of methods can be used
to derive a DOF ordering from Mi j. The RCM approach firstly
converts Mi j to binary matrices according to a certain thresh-
old and then solves the matrix bandwidth reduction problem
using the reversed Cuthill–Mckee algorithm [43, 63]. Another
approach is to use the idea of Fiedler vector [64] to avoid
information loss during the thresholding process [47, 48]. The
spirit is to recognize orbital ordering or ranking as continu-
ous one dimensional variables xi and use the Fiedler vector
to minimize loss function

∑
i j(xi − x j)2|Mi j|. Loss functions

in more general form can be optimized using GA. In practice,
one popular choice for Mi j is Ki j [45, 48, 65]. Another matrix
that is commonly chosen as Mi j is the mutual information
matrix Ii j [44, 46, 47]:

Ii j =
1
2

(
Si + S j − Si j

) (
1 − δi j

)
(39)

where Ssys = −Tr ρsys ln ρsys and ρsys is the reduced density
matrix of the system. The calculation of Ii j requires the knowl-
edge of the system wavefunction, which is typically obtained
by trial DMRG calculation.

In order to maintain the anti-commutation relation of
fermionic creation and annihilation operators, c†i and ci are
transformed to Pauli matrices via Jordan–Wigner transforma-
tion:

ĉ†i = +̂i

∏
j<i

Ẑ j

ĉi = −̂i

∏
j<i

Ẑ j

(40)

where we have used +̂i =
1
2 (X̂i − iŶ i) and −̂i =

1
2 (X̂i + iŶi) to

represent spin creation/annihilation operators. During the OFS
sweeping, it is necessary to re-perform the Jordan–Wigner
transformation according to DOF ordering in order to keep MO

of the MPO constant. The reason is that equation (40) assumes
a natural ordering of the DOFs, and the MPO representation is
more compact if the DOF ordering is the same as the ordering
implied by the transformation. An illustrative example of this
point is shown in appendix B. Thus, if the ordering of the Jor-
dan–Wigner transformation remains unchanged during OFS
iteration, the bond dimension of the MPO obtained by sym-
bolic MPO DOF swapping algorithm presented in section 2.3
will continue to grow. To address this issue, it is mandatory to
update the Jordan–Wigner mapping once DOF swapping takes
place. Suppose the ith DOF and the (i + 1)th DOF are to be

swapped, and the Jordan–Wigner transformation is carried out
according to equation (40), then the updated Jordan–Wigner
transformation for ĉ†i (ĉi) and ĉ†i+1(ĉi+1) reads:

ĉ†i = +̂iẐi+1

∏
j<i

Ẑ j

ĉ†i+1 = +̂i+1

∏
j<i

Ẑ j

(41)

while other operators remain unchanged. Equivalently, the
following mapping (together with its Hermite conjugation)
should be applied to the previously Jordan–Wigner trans-
formed Hamiltonian:

+̂i → +̂iẐi+1

+̂i+1 → Ẑi+̂i+1.
(42)

Before updating the Jordan–Wigner transformation, the sys-
tem wavefunction stored in the MPS should also be updated
accordingly. More specifically, the definition for the states
| . . . 11 . . .〉 = ĉ†i ĉ

†
i+1| . . . 00 . . .〉 has changed due to the DOF

swapping for Jordan–Wigner transformation. Thus, the coef-
ficient matrix C[i + 1, i] should be updated before the decom-
position according to

C[i + 1, i]1,1
li−1ri+1

→−C[i + 1, i]1,1
li−1ri+1

(43)

to keep the Jordan–Wigner DOF ordering for the state and for
the operator synchronized.

To test the performance of OFS for the ab initio Hamilto-
nian we choose N2 with cc-pVDZ basis set [66] as benchmark
platform. The bond length is set to 1.905 Å, which is close to
dissociation and induces strong correlation. In our calculations
the 1s orbitals are frozen. The integrals are calculated using the
PySCF package [67]. FCI energy with 1s orbital frozen, cor-
responding to a (10e, 26o) active space, is available for this
particular system [68], which is EFCI = −108.9948 Hartree.
Meanwhile, the RHF energy is ERHF = −108.384 78 Hartree.
Highly accurate DMRG with bond dimension MS up to 4000
yields an error of 0.02 mH [69]. We compare OFS with six dif-
ferent traditional ordering strategies, labeled as energy, sym-
metry, RCM-K, Fiedler-K, GA-K and GA-I. The details of the
strategies are listed below.

(a) Energy. Sort orbitals based on their RHF energy;
(b) Symmetry. Sort orbitals based on their symmetry and

energy. The irreducible representations are sorted as
Ag, B1u, B2u, B3u, B2g, B3g, B1g, Au. Within the same irre-
ducible representation, the orbitals are sorted according
to energy;

(c) RCM-K. The ordering obtained by solving the band
reduction problem of the K matrix using the RCM
algorithm;

(d) Fiedler-K. The ordering given by the solution of minimiz-
ing

∑
i j(xi − x j)2|Ki j| using the Fiedler vector approach;

(e) GA-K. The ordering given by the solution of minimizing∑
i j(i − j)2|Ki j| using GA [70];

8
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Table 1. The effect of OFS on the DMRG calculated correlation energy
E − ERHF starting from different initial orderings. The unit is Hartree. The
most accurate result for each bond dimension is shown in bold. The exact
correlation energy by EFCI − ERHF is −0.6100.

Initial ordering OFS type
MS

64 128 256 512

Energy No OFS −0.495 −0.543 −0.5804 −0.599 57
OFS-S −0.522 −0.549 −0.5892 −0.600 10
OFS-D −0.525 −0.554 −0.5828 −0.600 40
OFS-D/S −0.526 −0.546 −0.5876 −0.600 43

Symmetry No OFS −0.541 −0.582 −0.6003 −0.606 86
OFS-S −0.554 −0.586 −0.6003 −0.607 29
OFS-D −0.564 −0.589 −0.6028 −0.607 62
OFS-D/S −0.565 −0.587 −0.6035 −0.607 00

RCM-K No OFS −0.543 −0.584 −0.6005 −0.606 89
OFS-S −0.562 −0.591 −0.6017 −0.606 84
OFS-D −0.546 −0.593 −0.6030 −0.608 44
OFS-D/S −0.585 −0.579 −0.6035 −0.607 88

Fiedler-K No OFS −0.435 −0.557 −0.5854 −0.600 16
OFS-S −0.473 −0.488 −0.4937 −0.601 54
OFS-D −0.435 −0.569 −0.5925 −0.600 30
OFS-D/S −0.436 −0.555 −0.5852 −0.603 59

GA-K No OFS −0.520 −0.548 −0.5905 −0.601 88
OFS-S −0.523 −0.576 −0.5919 −0.602 34
OFS-D −0.520 −0.549 −0.5893 −0.602 12
OFS-D/S −0.521 −0.549 −0.5905 −0.601 75

GA-I No OFS −0.556 −0.584 −0.5983 −0.604 96
OFS-S −0.546 −0.587 −0.5989 −0.604 84
OFS-D −0.550 −0.586 −0.5984 −0.605 08
OFS-D/S −0.556 −0.586 −0.5995 −0.605 06

Figure 4. Mutual information Ii j from the DMRG optimized wavefunction. The DOF orderings are (a) RCM-K, (b) OFS-S optimized
ordering starting from RCM-K initial ordering, (c) OFS-D optimized ordering starting from RCM-K initial ordering and (d) GA-I. The
specific DOF orderings are included in appendix A.

(f) GA-I. The ordering given by the solution of minimizing∑
i j(i − j)2|Ii j| using GA [70]. Ii j is the mutual informa-

tion matrix calculated using DMRG with energy ordering
and MS = 512.

The initial ordering of OFS is set to the orderings derived
from the strategies, and we test if OFS is able to improve the
ordering. All the initial orderings are included in appendix B.
The largest bond dimension MS employed in our calculation
is 512, which is typically smaller than practical DMRG calcu-
lations for ab initio quantum chemistry. The reason we adopt

such a small bond dimension is two-fold. The first is reduc-
ing computational cost and the second is making the effect of
different orderings more prominent. The DMRG sweeps are
performed for 80 rounds with the warm-up algorithm [62]. The
wavefunction initial guess is set to the RHF determinant in all
cases.

In table 1 we show the DMRG calculated correlation energy
E − ERHF with or without OFS. The exact correlation energy
by EFCI − ERHF is −0.6100. In most cases enabling OFS
will lead to lower energy and better DMRG accuracy. The
lowest energy is obtained by OFS optimized ordering using

9
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Figure 5. The time evolution error of the S2 diabatic state population P(t) with or without the OFS algorithm for the S1/S2 internal
conversion of pyrazine, starting from (a) random ordering, (b) {v9a, v6a, |S1, S2〉, v10a, v1} plus random bath mode ordering and (c)
{|S1, S2〉, v6a, v10a, v1, v9a} plus random bath mode ordering. The shades represent the standard deviation of the error |P(t) − Pref (t)|. The
bond dimension MS is set to 16 and the reference population Pref (t) is obtained with bond dimension 128.

Figure 6. Time evolution of the bipartite entanglement entropy S at
each virtual bond for the S1/S2 internal conversion of pyrazine with
(a) OFS disabled and (b) OFS-S enabled. The initial DOF ordering
groups strongly correlated DOFs at the left side of the MPS chain in
the same pattern as figure 5(b). Details of the initial DOF ordering
as well as the optimized DOF ordering are presented in appendix A.
The bond dimension MS is set to 16.

RCM-K as the initial ordering. In particular, when OFS-D is
used in combination with the RCM-K initial ordering, more
than 99.7% of the correlation energy can be captured. Gen-
erally speaking, OFS-D and OFS-D/S yield slightly better
DOF ordering than OFS-S, in agreement with our obser-
vation in figure 2. It is a surprising result that the GA-I
ordering is not as accurate as the RCM-K ordering or the sym-
metry ordering. Three possible reasons are the inaccuracy of
I, the local minimums in DMRG optimization and the defects
in the loss function used in the GA (for example, the pun-
ishment over the distance should not be quadratic). For the

GA-I initial ordering the improvement by OFS is not signif-
icant. The reason is probably that the initial ordering given by
GA-I is close to an OFS local minimum. To prove this, we
calculated the Kendall rank correlation coefficient τ between
the initial ordering and the OFS optimized ordering. τ mea-
sures the similarity between two rankings. τ = 0 for uncorre-
lated DOF orderings and τ = 1 for identical DOF orderings.
If GA-I is used as the initial ordering, the correlation coeffi-
cient averaged over the bond dimension is τGA−I = 0.91. For
all other initial DOF orderings, the averaged correlation coeffi-
cient is τ others = 0.82. τGA−I > τ others means that the similarity
between the GA-I ordering and its OFS optimized ordering is
bigger than the similarities between other initial orderings and
their OFS optimized orderings. Particularly inaccurate DMRG
energies are obtained for Fiedler-K/OFS-S with MS = 128 or
MS = 256 and the culprit is probably the local minimums
present in DMRG optimizations.

In figure 4 we illustrate Ii j of the optimized wavefunction
by several different orderings. The bond dimension MS is set
to 512. By comparing figures 4(b) and (c) with figure 4(a) we
can see that OFS indeed reduces the distance between strongly
entangled DOFs. Although figure 4(b) seems to be a better
ordering than figure 4(c), in table 1 the energy calculated using
the ordering shown in figure 4(c) is more accurate than that
of figure 4(b). For comparison we also include the Ii j by the
GA-I ordering in figure 4(d). As expected, GA-I puts large Ii j

elements around the diagonal of the matrix most effectively.
However, from table 1 its DMRG optimized energy is higher
than the other three cases. Details of the optimized ordering
are included in appendix A.

3.3. Pyrazine S1/S2 internal conversion dynamics

Next, we test the OFS algorithm in the time evolution problem
and choose the S1/S2 internal conversion dynamics of pyrazine
after UV photoexcitation to the S2 state as the benchmark plat-
form. This model is firstly studied in detail by multiconfigu-
ration time-dependent Hartree (MCTDH) [71–74]. Pyrazine
features a conical intersection between the S1 and the S2 states
as well as strong vibronic linear and quadratic couplings with
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Figure 7. The time evolution error of the S2 diabatic state population P(t) for the S1/S2 internal conversion of pyrazine, with initial ordering
derived from (a) ML-MCTDH tree and (b) OFS-S optimized ordering. The specific DOF orderings are included in appendix A.

24 vibration modes:

Ĥ =

(
−Δ 0

0 Δ

)
+

24∑
i=1

ωi

2

(
− ∂2

∂q2
i

+ q2
i

)

+

24∑
i=1

qi

(
gi,11 gi,12

gi,12 gi,22

)
+

24∑
i, j=1

qiq j

(
g′

i j,11 g′
i j,12

g′
i j,12 g′

i j,22

)

(44)
where the matrix element indices refer to the diabatic potential
energy surfaces for S1 or S2 state, 2Δ is the energy difference
between S1/S2 at the ground state equilibrium geometry, qi is
the coordinate of the ith ground state normal mode, ωi is the
vibration frequency of the ith vibration mode, and g(g′) is lin-
ear(quadratic) coupling constants. All parameters are adopted
directly from the references [73, 74].

The absorption spectra I(ω) can be calculated via the
Fourier transformation of dipole–dipole correlation function:

I(ω) ∝
∫ ∞

−∞
eiωt−t/Γ〈μ̂(t)μ̂(0)〉ground dt (45)

Here μ̂ is the dipole operator and the subscript ‘ground’
denotes the ground state.Γ accounts for a homogeneousbroad-
ening of the spectrum. At zero temperature, the calculation of
the correlation function reduces to the calculation of the over-
lap between the initial vertical excitation S2 state wavefunction
Ψ(0) and the time evolved wavefunction Ψ(t):

〈μ̂(t)μ̂(0)〉ground ∝ 〈Ψ(0)|Ψ(t)〉. (46)

Various TD-DMRG algorithms have been applied to the sys-
tem [28, 75, 76]. Four core vibration modes that exhibit
strong vibronic coupling can be identified and they should be
arranged close to the electronic DOF [28]. Nevertheless, it is
difficult to further optimize the DOF ordering from physical
intuition because of the complicated interaction pattern.

Figure 5(a) shows the effect of OFS for the internal conver-
sion dynamics of pyrazine starting from random initial DOF
ordering by comparing the time evolution error on the popula-
tion of the S2 diabatic state P(t). The bond dimension MS is set
to 16 and the time evolution step is set to 0.5 fs. Again, the MS

used here is much smaller than what is required for numer-
ically exact DMRG calculation. The reference data Pref (t) is

obtained with TD-DMRG and the bond dimension MS is set
to 128. The shades represent the standard deviation of the
|P(t) − Pref (t)| for seven different initial DOF orderings.
Figure 5(a) indicates that the OFS-S scheme significantly
reduces the time evolution error. The OFS-D and the
OFS-D/S scheme are able to reduce the error, but only
marginally. In figures 5(b) and (c) we use a different
strategy to generate the initial ordering. More specifically,
following the suggestion by Ma et al [28], we put the elec-
tronic DOF and the vibrational DOFs that are most strongly
coupled to the electronic DOF at one side of the chain,
with the order of {v9a, v6a, |S1, S2〉, v10a, v1} for (b) and
{|S1, S2〉, v6a, v10a, v1, v9a} for (c). To test OFS, the 20 bath
modes are put at the other side of the chain randomly instead
of by ωi in the literature [28]. The symbols of the modes are
the same as literature [28, 73]. The general trends reflected by
figures 5(b) and (c) are quite similar. When OFS is disabled,
we find that this ordering indeed leads to a smaller overall error
compared to random DOF ordering. Meanwhile, the OFS algo-
rithms are able to further reduce the error and the lowest error
is observed for the OFS-S scheme. We note that here the effect
of the size of the physical indices d is not taken into account,
and whether DOFs with large d are arranged at neighboring
sites can be a crucial factor for the overall computational cost,
[28] in addition to the entanglement considerations.

In figure 6(a) we show one example of the evolution of
bipartite entanglement entropy S without OFS together with
S with OFS in figure 6(b). The initial ordering is generated in
the same way as in figure 5(b) and the specific form of the
initial ordering as well as the optimized ordering are listed in
appendix A. In both figures 6(a) and (b) the DOFs that are most
strongly entangled reside in the left end of the chain, which
correspond to {v9a, v6a, |S1, S2〉, v10a, v1}. In figure 6(a),
the randomly generated ordering for the bath modes spreads
the entanglement over a large fraction of the MPS chain.
If the ordering is allowed to be optimized, then the spreading of
the entanglement over the MPS chain is effectively reduced
over the time evolution iteration, as shown in figure 6(b). From
physical intuition, the best DOF ordering should place the most
strongly entangled DOFs at the center of the chain. Such global
optimum is not found by OFS because moving DOFs at the
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right side of the chain to the left side one site at a time will tem-
porarily separate the most entangled DOFs and increase entan-
glement. We note that the maximum entanglement entropy S
in both figures 6(a) and (b) is approaching ln MS, so a larger
bond dimension is required for practical computation.

Lastly we compare the DOF ordering used in the ML-
MCTDH literature [77] with the OFS-S optimized ordering
used in figure 6(b). The DOF mapping from a ML-MCTDH
tree to a MPS chain is not unique, here we take a simple
approach which is to read out the vibrational DOFs in the ML-
MCTDH tree shown in figure 9 of the reference [77] from
left to right. The specific form of the ordering is included in
appendix A. In the figure 7 we compare the time evolution
error starting from the ordering derived from ML-MCTDH
tree and an ordering optimized by OFS-S. When OFS is dis-
abled, by comparing figures 7(a) and (b) we can see that using
OFS-S optimized ordering as the fixed ordering yields more
accurate population than the population calculated from the
ML-MCTDH ordering. Furthermore, figure 7(a) shows that
OFS is able to optimize the ordering derived from the ML-
MCTDH tree and increase accuracy. For the ordering that has
already been optimized by OFS-S, as the entanglement entropy
evolves with time, OFS still tries to find better ordering dur-
ing the time evolution. Yet, as shown in figure 7(b) the overall
improvement is not particularly visible especially for OFS-S.

4. Conclusion

In this work, we have proposed a general framework termed
OFS to optimize the DOF ordering in MPS, which features
on the fly swapping of neighboring MPS sites during DMRG
sweeps. The OFS framework is agnostic to the underlying
model Hamiltonian and can be applied in static ground state
DMRG, TD-DMRG or even dynamical DMRG in the fre-
quency domain. Besides, OFS can be straightforwardly gen-
eralized to other tensor network structures [41, 78]. The cri-
teria for whether to perform the swapping in each iteration is
flexible and three schemes are suggested. The OFS-S scheme
minimizes the bipartite entanglement entropy S, and the OFS-
D scheme minimizes the truncation error D. A hybrid scheme
named OFS-D/S is also designed as an attempt to combine the
advantage of both schemes. We propose an efficient DOF
swapping algorithm for MPO in order to keep the DOF order-
ing of MPO adapted to that of MPS during the OFS itera-
tions. We argue that the overall computational cost for the OFS
scheme is negligible for practical models.

The OFS schemes are tested in the one dimensional
Heisenberg model, the ab initio electronic structure of the N2

molecule at the dissociation bond length and the internal con-
version dynamics of pyrazine. The three cases demonstrate
that the OFS schemes are able to find a better DOF ordering
compared to the initial ordering and improve the accuracy of
DMRG simulation. For the N2 case and the pyrazine case, we
present evidence that OFS effectively moves DOFs that are
strongly entangled toward each other. Nevertheless, simula-
tion results based on the Heisenberg model indicate that the
DOF ordering optimized by OFS may still lay quite far from
the globally optimal ordering. The convergence to the locally

optimized ordering is achieved in approximately 10 rounds of
sweeps and we expect for larger systems OFS will also quickly
converges to a local minimum. For the pyrazine case, the OFS-
S scheme yields better overall DOF ordering than the other
two schemes. For the Heisenberg model and the N2 case the
DOF ordering by the OFS-S scheme is not as good as the other
two schemes, but still acceptable. Thus in general we recom-
mend the OFS-S scheme for practical calculation. Whether it
is possible to find a loss function L that constantly produces
better DOF ordering than other schemes requires additional
investigation.

We note that OFS is not designed to ‘outperform’ any exist-
ing DOF ordering methods. Rather, we suggest closely inte-
grating OFS with other DOF ordering schemes so that OFS
can further improve the DOF ordering, with almost no addi-
tional computational cost. A particularly interesting combina-
tion is OFS and the GA that takes DMRG optimized energy
as the evolution criteria [45]. We believe that OFS can help
speed up the convergence of the GA and in the context of GA
the presence of local minimums in OFS is not a significant
drawback.
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Appendix A. DOF orderings in the main text

In the following we list five of the OFS-D optimized spin
orderings for the Heisenberg model:
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• 12, 19, 6, 26, 5, 4, 3, 11, 22, 21, 23, 24, 13, 10, 9, 16, 31,
30, 28, 0, 2, 1, 14, 15, 29, 8, 7, 18, 17, 20, 27, 25

• 21, 7, 8, 30, 31, 28, 19, 20, 6, 5, 4, 3, 29, 27, 10, 12, 16,
17, 14, 2, 0, 1, 11, 13, 15, 26, 25, 23, 18, 24, 22, 9

• 15, 9, 14, 1, 10, 16, 22, 30, 21, 19, 20, 23, 31, 29, 0, 2, 24,
25, 26, 3, 5, 6, 12, 13, 11, 27, 28, 18, 8, 4, 7, 17

• 9, 7, 28, 29, 10, 12, 13, 8, 24, 22, 23, 18, 4, 3, 5, 17, 21,
20, 15, 27, 25, 0, 30, 31, 26, 6, 11, 1, 19, 14, 2, 16

• 29, 10, 21, 15, 25, 26, 31, 30, 14, 16, 0, 1, 2, 13, 11, 12,
17, 18, 19, 20, 24, 23, 8, 7, 6, 3, 4, 27, 22, 5, 9, 28

For the N2 molecule, the initial orderings in terms of spin-
orbital are listed below. The orbital index is Hartree–Fock
energy, from low to high.

• Energy: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 51, 52

• Symmetry: 1, 2, 5, 6, 23, 24, 29, 30, 33, 34, 39, 40, 3, 4,
15, 16, 21, 22, 31, 32, 45, 46, 51, 52, 7, 8, 17, 18, 35, 36,
9, 10, 19, 20, 37, 38, 11, 12, 25, 26, 47, 48, 13, 14, 27, 28,
49, 50, 41, 42, 43, 44

• RCM-K: 33, 34, 29, 30, 23, 24, 5, 6, 1, 2, 39, 40, 51, 52,
31, 32, 21, 22, 15, 16, 3, 4, 45, 46, 49, 50, 27, 28, 13, 14,
37, 38, 19, 20, 9, 10, 35, 36, 17, 18, 7, 8, 47, 48, 11, 12,
25, 26, 41, 42, 43, 44

• Fiedler-K: 29, 30, 1, 2, 5, 6, 23, 24, 43, 44, 33, 34, 41, 42,
39, 40, 49, 50, 13, 14, 27, 28, 15, 16, 31, 32, 21, 22, 3, 4,
51, 52, 45, 46, 47, 48, 11, 12, 25, 26, 19, 20, 37, 38, 9, 10,
35, 36, 7, 8, 17, 18

• GA-K: 37, 38, 9, 10, 19, 20, 47, 48, 11, 12, 25, 26, 41, 42,
39, 40, 29, 30, 5, 6, 23, 24, 1, 2, 33, 34, 17, 18, 7, 8, 35,
36, 49, 50, 13, 14, 27, 28, 43, 44, 15, 16, 21, 22, 3, 4, 31,
32, 51, 52, 45, 46

• GA-I: 52, 51, 26, 27, 19, 25, 28, 20, 18, 17, 12, 9, 10, 11,
13, 8, 7, 14, 6, 15, 16, 5, 22, 21, 30, 24, 23, 1, 2, 4, 3, 29,
32, 31, 34, 33, 38, 37, 36, 35, 47, 39, 41, 42, 40, 48, 50,
46, 44, 45, 43, 49

The optimized ordering by OFS-S from the RCM-K initial
ordering shown in figure 4(b) is

• 51, 39, 40, 31, 32, 34, 33, 29, 30, 23, 24, 21, 22, 2, 1, 6,
15, 5, 16, 4, 3, 52, 46, 45, 49, 50, 38, 37, 28, 27, 19, 13, 8,
7, 14, 18, 36, 20, 10, 12, 9, 11, 17, 26, 25, 35, 41, 42, 43,
44, 48, 47

and the optimized ordering by OFS-D from the RCM-K
initial ordering shown in figure 4(c) is

• 33, 34, 29, 30, 23, 24, 5, 6, 1, 2, 15, 21, 31, 32, 22, 51, 52,
16, 3, 4, 39, 46, 40, 45, 49, 50, 36, 35, 17, 27, 13, 7, 18,
28, 14, 8, 37, 47, 38, 20, 19, 10, 9, 48, 11, 12, 25, 26, 41,
42, 43, 44

The initial ordering shown in figure 6(a) for the pyrazine
model is
• v9a, v6a, |S1, S2〉, v10a, v1, v17a, v11, v5, v12, v13, v4,
v18b, v8b, v8a, v7b, v20b, v19a, v19b, v18a, v14, v6b,
v16b, v3, v16a, v2

and the optimized ordering shown in figure 6(b) is

• |S1, S2〉, v9a, v1, v6a, v10a, v8a, v12, v11, v18b, v19b,
v14, v16a, v4, v17a, v5, v6b, v8b, v3, v19a, v20b, v18a,
v7b, v2, v16b, v13

The ordering derived from ML-MCTDH tree used in
figure 7(a) is

• |S1, S2〉, v10a, v6a, v1, v9a, v8a, v2, v6b, v8b, v4, v5,
v3, v16a, v12, v13, v19b, v18b, v18a, v14, v19a, v17a,
v20b, v16b, v11, v7b

Appendix B. MPO representation
of Jordan–Wigner transformed Hamiltonian

In this section, we illustrate the importance of keeping con-
sistent DOF ordering in Jordan–Wigner transformation and in
MPO. We take the following toy Hamiltonian with totally 12
terms as an example:

Ĥ =

4∑
i, j=1,i �= j

ĉ†i ĉ j. (B1)

The Hamiltonian is designed to be invariant with respect to
DOF index permutation. Jordan–Wigner transformation with
operator order {1, 2, 3, 4}, can be written as:

ĉ†1 = +̂1, ĉ1 = −̂1

ĉ†2 = Ẑ1+̂2, ĉ2 = Ẑ1−̂2

ĉ†3 = Ẑ1Ẑ2+̂3, ĉ3 = Ẑ1Ẑ2−̂3

ĉ†4 = Ẑ1Ẑ2Ẑ3+̂4, ĉ4 = Ẑ1Ẑ2Ẑ3−̂4.

(B2)

For DOF order {1, 2, 3, 4}, optimal MPO in the symbolic form
reads:

Ĥ =
[̂
I1 +̂1 −̂1

]
⎡
⎣

Î2 +̂2 −̂2 0
0 Ẑ2 0 −̂2

0 0 Ẑ2 +̂2

⎤
⎦

⎡
⎢⎢⎣

−̂3 +̂3 0
0 Ẑ3 −̂3

Ẑ3 0 +̂3

0 0 Î3

⎤
⎥⎥⎦

⎡
⎣
+̂4

−̂4

Î4

⎤
⎦ (B3)

which means

Ŵ[1 : 2] =
[
Î1Î2, +̂1Ẑ2 + +̂2, −̂1Ẑ2 + −̂2, +̂1−̂2 + −̂1+̂2

]
Ŵ[3 : 4] =

[
+̂3−̂4 + −̂3+̂4, −̂3 + Ẑ3−̂4, +̂3 + Ẑ3+̂4, Î3 Î4

]
.

(B4)
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The maximum MPO bond dimension MO = 4.
On the other hand, if the DOF ordering is set to be

{1, 3, 2, 4}, with the same Jordan Wigner transformation

equation (B2), the optimal MPO in the symbolic form reads:

Ĥ =
[
Î1 +̂1 −̂1

] ⎡⎣Ẑ3 0 +̂3 −̂3 +̂3 −̂3 0 0
0 −̂3 Î3 0 0 0 Ẑ3 0
0 +̂3 0 Î3 0 0 0 Ẑ3

⎤
⎦ ×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−̂2 +̂2 0
0 0 Ẑ2

0 0 −̂2

0 0 +̂2

0 Î2 0
Î2 0 0
0 Ẑ2 0

Ẑ2 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎣+̂4

−̂4

Î

⎤
⎦ (B5)

which means

Ŵ[1 : 2] =
[
Ẑ3, +̂1−̂3 + −̂1+̂3, +̂1 + +̂3, −̂1 + −̂3, +̂3 , −̂3, +̂1Ẑ3, −̂1Ẑ3

]
Ŵ[3 : 4] =

[
+̂2−̂4 + −̂2+̂4, Ẑ2, −̂2, +̂2, −̂4, +̂4, Ẑ2−̂4, Ẑ2+̂4

]
.

(B6)

The maximum MPO bond dimension MO = 8. It is clear
that equation (B3) is a much more compact representation than
equation (B5) for the same Hamiltonian. Thus, if the DOF is
ordered to be {1, 3, 2, 4}, the fermion operators should be
retransformed to spin operators according to the ordering for
minimal MPO bond dimension.

ORCID iDs

Weitang Li https://orcid.org/0000-0002-8739-641X
Jiajun Ren https://orcid.org/0000-0002-1508-4943
Hengrui Yang https://orcid.org/0000-0001-8525-9772
Zhigang Shuai https://orcid.org/0000-0003-3867-2331

References

[1] White S R 1992 Phys. Rev. Lett. 69 2863
[2] White S R 1993 Phys. Rev. B 48 10345
[3] Shuai Z, Bredas J-L, Pati S K and Ramasesha S 1997 Optical

Probes of Conjugated Polymers vol 3145 ed Z V Vardeny and
L J Rothberg (Washington: International Society for Optics
and Photonics (SPIE)) pp 293–302

[4] Shuai Z, Brédas J L, Saxena A and Bishop A R 1998 J. Chem.
Phys. 109 2549

[5] Fano G, Ortolani F and Ziosi L 1998 J. Chem. Phys. 108 9246
[6] White S R and Martin R L 1999 J. Chem. Phys. 110 4127
[7] Li Z, Guo S, Sun Q and Chan G K-L 2019 Nat. Chem. 11 1026
[8] Taffet E J, Beljonne D and Scholes G D 2020 J. Am. Chem. Soc.

142 20040
[9] Phung Q M, Muchammad Y, Yanai T and Ghosh A 2021 JACS

Au 1 2303
[10] Chan G K-L and Sharma S 2011 Annu. Rev. Phys. Chem. 62 465
[11] Kurashige Y 2014 Mol. Phys. 112 1485
[12] Baiardi A and Reiher M 2020 J. Chem. Phys. 152 040903
[13] Cheng Y, Xie Z and Ma H 2022 J. Phys. Chem. Lett. 13 904

[14] Schollwöck U 2011 Ann. Phys., NY 326 96
[15] Cazalilla M A and Marston J B 2002 Phys. Rev. Lett. 88 256403
[16] Luo H, Xiang T and Wang X 2003 Phys. Rev. Lett. 91 049701
[17] White S R and Feiguin A E 2004 Phys. Rev. Lett. 93 076401
[18] Vidal G 2004 Phys. Rev. Lett. 93 040502
[19] Daley A J, Kollath C, Schollwöck U and Vidal G 2004 J. Stat.

Mech. P04005
[20] Ma H, Luo Z and Yao Y 2018 Mol. Phys. 116 854
[21] Paeckel S, Köhler T, Swoboda A, Manmana S R, Schollwöck U

and Hubig C 2019 Ann. Phys., NY 411 167998
[22] Borrelli R and Gelin M F 2021 Wiley Interdiscip. Rev.-Comput.

Mol. Sci. 11 e1539
[23] Li W, Ren J and Shuai Z 2021 Chem. J. Chinese Universities 42

2085
[24] Haegeman J, Lubich C, Oseledets I, Vandereycken B and

Verstraete F 2016 Phys. Rev. B 94 165116
[25] Dirac P A M 1930 Math. Proc. Camb. Phil. Soc. 26 376–85
[26] Haegeman J, Cirac J I, Osborne T J, Pižorn I, Verschelde H and
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