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ABSTRACT
Accurately simulating non-Markovian quantum dynamics in system–bath coupled problems remains challenging. In this work, we present a
novel memory truncation scheme for the iterative quasi-adiabatic propagator path integral (iQuAPI) method to improve accuracy. Conven-
tional memory truncation in iQuAPI discards all influence functional beyond a certain time interval, which is not effective for problems with
a long memory time. Our proposed scheme selectively retains the most significant parts of the influence functional using the density matrix
renormalization group algorithm. We validate the effectiveness of our scheme through simulations of the spin-boson model across various
parameter sets, demonstrating faster convergence and improved accuracy compared to the conventional scheme. Our findings suggest that
the new memory truncation scheme significantly advances the capabilities of iQuAPI for problems with a long memory time.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0221916

I. INTRODUCTION

System–bath coupled models provide a microscopic descrip-
tion of dissipative quantum processes in the condensed phase,1
such as spectroscopy and energy transfer in protein environ-
ments in light-harvesting complexes,2,3 optoelectronic processes in
organic semiconductors,4,5 and quantum transport in molecular
electronic devices.6,7 The theoretical investigation of the dynamics
of system–bath models is essential for understanding the macro-
scopic phenomena observed in experiments from a microscopic
perspective.

However, it remains a significant challenge to simulate the
quantum dynamics of system–bath models with high accuracy
beyond the common perturbative and Markovian approaches. The
wavefunction approaches, including the multilayer multiconfigura-
tion time-dependent Hartree (ML-MCTDH)8,9 and time-dependent
density matrix renormalization group (TD-DMRG) approaches,10,11

treat the system and bath degrees of freedom (DOFs) on an equal
footing. For condensed phase problems, hundreds or thousands
of discrete bath modes need to be treated explicitly for a single
bath, making it difficult to extend to more complex problems with

multiple baths. When only the dynamics of the system part is of
interest, it is more common to calculate the reduced dynamics of
the system by treating the bath DOFs implicitly and a priori. Nev-
ertheless, the memory effect induced by the bath makes the reduced
dynamics of the system non-Markovian—the dynamics depends on
all the historical information of the system part, which is also called
temporal correlation.12,13

There are many numerically exact reduced quantum dynamics
approaches that have been proposed, including hierarchical equa-
tions of motion (HEOM),7,14–16 quasi-adiabatic propagator path
integral (QuAPI),17–19 stochastic Schrödinger equation (SSE),4,20,21

and generalized quantum master equation (GQME).22,23 Among
them, QuAPI, developed by Makri and co-workers, based on the
Feynman and Vernon influence functional theory,24 can, in prin-
ciple, handle arbitrary bath spectral density and zero temperature,
making it very compelling. The practically used iterative QuAPI
(iQuAPI) approach and its variants are not only widely adopted
to benchmark other methods but also applied to many real-world
problems.25–27 However, the computation and storage of the central
quantity in QuAPI, the augmented reduced density tensor (ARDT),
increases exponentially with respect to the physical memory time.
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To make numerical simulation feasible, the memory time must
be truncated in practice, known as the finite memory approxima-
tion. The truncation length can be regarded as a parameter that
needs to be converged. For problems with long memory, it has been
found that convergence is very challenging with this conventional
truncation scheme in iQuAPI.28

Many algorithms have been proposed to improve the accuracy
of QuAPI when dealing with problems with long memory, including
the path filtering,29 the blip decomposition,30 the coarse graining,31

the scaling coefficient of influence functional,28 and the kink sum.32

The more recently developed time-evolving matrix product operator
approach (TEMPO) and its variants use matrix product operators
to represent the influence functional and matrix product states
(MPS) to approximate ARDT, which can greatly improve the effi-
ciency of QuAPI for problems with long memory.33–40 The small
matrix decomposition of the path integral approach (SMatPI) and its
extended memory algorithm (x-SMatPI), developed by Makri, dis-
entangles the original path integral recursively, and thus, the residual
terms are negligible and can be discarded. As a result, the storage of
the original exponentially large ARDT can be replaced with small
matrices with only two time indices.41–43

In this work, based on the iQuAPI approach, we propose a
new memory truncation scheme that improves the accuracy of the
conventional scheme. The idea of the scheme is that the influence
functional beyond a certain time interval is not fully discarded as
in the original iQuAPI algorithm, but the most important part is
selected and retained according to the density matrix renormaliza-
tion group theory (DMRG).44,45 In our method, an auxiliary time
slice is introduced, which is the renormalization of all the historical
time slices beyond a certain time interval. The effectiveness of
our method is demonstrated by comparing it with the conven-
tional iQuAPI method for simulating quantum dynamics of the
spin-boson model with a relatively long memory time.

The remaining sections of this paper are arranged as follows:
in Sec. II, we briefly recap the iQuAPI algorithm and present the
detailed algorithm of our memory truncation scheme. In Sec. III,
we show the numerical results of the quantum dynamics of the
spin-boson model. Finally, we present our conclusions in Sec. IV.

II. METHODS
A. System–bath model and iQuAPI approach

System–bath models are widely used to study quantum dissipa-
tive dynamics in the condensed phase. In this work, we only consider
bosonic baths. The generic Hamiltonian is written as

Ĥ = ĤS + ĤB + ĤSB, (1)

ĤB =∑
i

1
2

p̂2
i +

1
2

ω2
i q̂2

i , (2)

ĤSB =∑
n

Ŝn ⊗∑
i

cniq̂i. (3)

Here, ĤS is the system Hamiltonian, which is assumed to be simple
to solve. ĤB is the bath Hamiltonian, composed of independent
harmonic modes with frequency ωi for mode i. ĤSB is the interaction

between the system and bath, in which the system operator Ŝn
is linearly coupled to the coordinates of the bath with coupling
strength cni.

The reduced density matrix of the system part after tracing the
whole density matrix over the bath part is ρS(t) = TrBρ(t). With
reduced quantum dynamics approaches, an effective equation of
motion of ρS(t) under the influence of the bath is to be solved.

The QuAPI method was proposed to solve the reduced quan-
tum dynamics and has been described in detail in a previously
excellent review.46 For simplicity, we only consider one coupling
term in Eq. (3), and thus, the summation over n is neglected.
The extension to multiple coupling terms with both diagonal and
off-diagonal system–bath couplings is referred to in Refs. 47–49. In
QuAPI, the Hamiltonian is re-partitioned into

Ĥ = Ĥ0 + Ĥ1, (4)

Ĥ0 =∑
i

1
2

p̂2
i +

1
2

ω2
i (q̂ i +

ciŜ
ω2

i
)

2

, (5)

Ĥ1 = ĤS −∑
i

c2
i Ŝ 2

2ω2
i

. (6)

With this partition, the formal propagator is split approximately by
Trotter decomposition. For clarity, the equations in this section are
presented with first-order Trotter splitting e−iĤ Δt

≈ e−iĤ 0Δte−iĤ 1Δt .
However, in our calculations in Sec. III, the second-order Trot-
ter splitting (e−iĤ Δt

≈ e−iĤ 1Δt/2e−iĤ 0Δte−iĤ 1Δt/2) is used for higher
accuracy. The extension of the first-order formulation to second-
order formulation is straightforward, similar as Refs. 18 and 19.
After inserting multiple resolutions of identity and integrating out
the bath part analytically, the evolution of the reduced density
matrix of the system is expressed as the path integral with N time
slices,

ρS(NΔt) = TrB⟨s+N ∣e
−iĤ NΔtρ(0)eiĤ NΔt

∣s−N⟩

= ∫ ds+0 ⋅ ⋅ ⋅∫ ds+N−1 ∫ ds−0 ⋅ ⋅ ⋅∫ ds−N−1

× ⟨s+0 ∣ρs(0)∣s−0 ⟩B(s
±

0 , s±1 , . . . , s±N)F(s
±

1 , s±2 , . . . , s±N), (7)

where ρ(0) is assumed to be factorized ρ(0) = ρS(0)ρeq
B . The for-

mulation to simulate the equilibrium initial state is given in
Refs. 50 and 51. Here, ∣s⟩ is the eigenstate of the system operator
Ŝ with eigenvalue s. The superscript ± indicates the forward and
backward propagation, respectively. For clarity, in the following, the
variable in parentheses of each tensor is omitted if possible. B is the
bare system propagator, written as

B(s±0 , s±1 , . . . , s±N) =
N

∏
k=1

Kk−1,k, (8)

Kk−1,k := Kk−1,k(s
±

k−1, s±k ), (9)

= ⟨s+k ∣e
−iĤ1Δt

∣s+k−1⟩⟨s
−

k−1∣e
iĤ1Δt
∣s−k ⟩. (10)
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F is the discrete Feynman–Vernon influence functional, which
can be decomposed into the products of pairwise components Ik′k
(k′ ≤ k). The influence functional describes the influence of the bath
on system dynamics and introduces temporal correlation,

F(s±1 , s±2 , . . . , s±N) =
N

∏
k=1

k

∏
k′=1

Ik′k, (11)

Ik′k ∶= Ik′k(s
±

k′ , s±k ) = exp [−(s+k − s−k )(ηk′ks+k′ − η∗k′ks−k′)]. (12)

The coefficient ηk′k only depends on Δk = k − k′, which is expressed
as18

ηk′k =
2
π

∞

∫
−∞

dω
J(ω)
ω2

exp (βω/2)
sinh (βω/2)

sin2
(ωΔt/2)e−iωΔt(k−k′), k′ < k,

ηkk =
1

2π

∞

∫
−∞

dω
J(ω)
ω2

exp (βω/2)
sinh (βω/2)

(1 − e−iωΔt
), k′ = k,

(13)

in which J(ω) is the bath spectral density, J(ω) = π
2∑i

c2
i

ωi
δ(ω − ωi).

To propagate Eq. (7) in an iterative way, the influence
functional F in Eq. (11) can be grouped as

F =
N

∏
k=1

fk, (14)

fk ∶= fk(s
±

1 , s±2 , . . . , s±k ) =
k

∏
k′=1

Ik′ k, (15)

where fk contains all the pairwise subterms of the influence func-
tional between k and k′ (k′ ≤ k). With this decomposition of F, the
key quantity in QuAPI called augmented reduced density tensor Ak
can be iteratively calculated as

Ak ∶= Ak(s
±

1 , . . . , s±k ), (16)

Ak = Kk−1,k fkAk−1 k > 1, (17)

A1 =∑
s±0

K01 f1⟨s+0 ∣ρ(0)∣s
−

0 ⟩. (18)

The reduced density matrix of the system can be calculated from
ARDT,

ρS(kΔt) = ∑
s±1 ,...,s±k−1

Ak. (19)

The size of ARDT is exponentially increased with respect to the
number of time slices. Even for a two-state system, the affordable
number of time slices is less than 20. Fortunately, for a typical con-
densed phase problem, the physical memory time τp is finite, which
can be characterized by the bath correlation time. More specifically,
the pairwise influence functional Ik′k with k − k′ > τp/Δt will become

1 as ηk′k approaches 0. In practice, we set a maximal time interval
Δk. When k − k′ > Δk, Ik′k is discarded. Accordingly, the influence
functional is truncated, that is,

fk ≈ f̃ k ∶= f̃ k(s
±

k−Δk, . . . , s±k ). (20)

With this truncation of influence functional, the time slices in ARDT
before k − Δk will not be used anymore and thus can be integrated.
The new iterative equation when k > Δk is

Ãk ∶= Ãk(s
±

k−Δk+1, . . . , s±k ), (21)

Āk ∶= Āk(s
±

k−Δk, . . . , s±k ), (22)

Āk = Kk−1,k f̃ kÃk−1, ÃΔk = AΔk, (23)

Ãk = ∑
s±k−Δk

Āk, (24)

ρS(kΔt) = ∑
s±k−Δk+1 ,...,s±k−1

Ãk. (25)

Following these iterative equations, Eqs. (23) and (24), ARDT Ãk

will propagate with a fixed size dΔk, where d is the size of the system
Hilbert space. This method is called iterative QuAPI. It should be
noted that the intermediate tensor Ā does not have to be stored in the
actual implementation. Here, we keep it to make it easier to compare
to the new memory truncation scheme later. The schematic diagram
of conventional iQuAPI is shown in Fig. 1(a).

It should be emphasized that only when the preset maximal
time interval is longer than the physical memory time (ΔkΔt > τp),
this memory truncation scheme in original iQuAPI is exact. Other-
wise, it is an approximation, called finite memory approximation.
Because the physical memory time is not known in advance, in
practice, several different Δk should be calculated to check the con-
vergence. It has been reported and will be shown in Sec. III that
for problems with a pretty long physical memory time, the results
converge very slowly with Δk and sometimes cannot even converge
in an affordable amount of computational cost. Therefore, we need
a better memory truncation scheme. This is the motivation of this
work.

B. Memory truncation scheme based on DMRG
The main idea to improve the conventional truncation scheme

is that the influence functional beyond Δk is not fully discarded, but
is renormalized, and then, the most important part of it is selected
and retained. The renormalization step is inspired by the density
matrix renormalization group theory44,45 and accomplished by the
singular value decomposition (SVD) algorithm.

When the time step k = Δk + 1 (the first truncation step is a bit
different from the following steps), instead of summing ĀΔk+1 over
s±1 as in conventional iQuAPI [Eq. (24)], ĀΔk+1 after unfolding is
decomposed by SVD as
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FIG. 1. Schematic diagram of iQuAPI with (a) the conventional memory trunca-
tion scheme and (b) the improved memory truncation scheme based on DMRG.
Δk = 2. The lines in different colors represent the pairwise influence func-
tional subterms Ik′k . A solid/dashed line indicates that the subterm is exact/
approximated. The semicircle represents the summation of the time slices beyond
the truncation length. The triangle represents the auxiliary time slice that contains
partial information of the history. (c) The graphic diagram of the renormalization
process when k = 5. After SVD, the deeper color in U, Λ, V† indicates more
important components.

ĀΔk+1 → ĀΔk+1(s
±

1 ∣s
±

2 ⋅ ⋅ ⋅ s
±

Δk+1) =
n

∑
r=1

Us±1 ,rΛrV†
r,s±2 ⋅ ⋅ ⋅s

±

Δk+1

≈

M1

∑
r1=1

Us±1 ,r1 Λr1 V†
r1 ,s±2 ⋅ ⋅ ⋅s

±

Δk+1
, (26)

where U and V are column-wise orthonormal matrices. Λ is a diag-
onal matrix with real and non-negative diagonal elements (Λ1 ≥ Λ2
≥ ⋅ ⋅ ⋅ ≥ Λn ≥ 0), called singular values. In the first truncation step,
n = d2. Instead of keeping all the n components, we set a cutoff ξ and

select only the components with Λr/

√

∑r Λ2
r > ξ, the size of which

is M1. This selection minimizes the Euclidean distance between the
original ARDT and the approximated ARDT. After this selection,
the state ∣s±1 ⟩ is renormalized to ∣r1⟩ according to Us±1 ,r1 ,

∣r1⟩ =∑
s±1

∣s±1 ⟩Us±1 ,r1 , (27)

where ∣r1⟩ can be regarded as the basis states of the auxiliary time
slice. The renormalized ARDT is defined as

ÃΔk+1(r1, s±2 , . . . , s±Δk+1) = Λr1 V†
r1 ,s±2 ⋅ ⋅ ⋅s

±

Δk+1
. (28)

In addition, the pairwise influence functional between s±1 and k′′

(k′′ > Δk + 1) is renormalized as

Ĩ1k′′(r1, r′1, s±k′′) =∑
s±1

U†
r1 ,s±1

I1k′′(s
±

1 , s±k′′)Us±1 ,r′1 , (29)

where Ĩ1k′′(r1, r′1, s±k′′) is the influence functional between the aux-
iliary time slice and normal time slice k′′, which is a three-legged
tensor different from the original one. Correspondingly,

f̃ k′′(r1, r′1, s±2 , . . . , s±k′′) = Ĩ1k′′
k′′

∏
k′=2

Ik′k′′. (30)

To calculate the reduced density matrix of the system at this
time, it should be noted that the renormalized states ∣r1⟩ have a
different weight to the original ∣s±1 ⟩. The weight is

W1(r1) =∑
s±1

Us±1 ,r1 , (31)

therefore,

ρ((Δk + 1)Δt) = ∑
r1 ,s±2 ,...,s±Δk

W1(r1)ÃΔk+1(r1, s±2 , . . . , s±Δk+1). (32)

It can be checked that when r1 is not truncated (ξ = 0, M1 = d2
),

ρ((k + 1)Δt) is exact because only a unitary basis rotation between
∣s±1 ⟩ and ∣r1⟩ is performed, which does not alter the results. (See the
supplementary material for the proof.)

The renormalization step will continue iteratively. When
k > Δk + 1,

Ãk ∶= Ãk(rk−Δk, s±k−Δk+1, . . . , s±k ), (33)

Āk ∶= Āk(rk−Δk−1, s±k−Δk, . . . , s±k ), (34)

Āk = ∑
r′k−Δk−1

Kk−1,k f̃ kÃk−1(r
′

k−Δk−1, s±k−Δk, . . . , s±k−1). (35)

Similar as Eq. (26),

Āk → Āk(rk−Δk−1s±k−Δk∣s
±

k−Δk+1 ⋅ ⋅ ⋅ s
±

k )

≈

Mk−Δk

∑
rk−Δk=1

Urk−Δk−1s±k−Δk ,rk−Δk Λrk−Δk V†
rk−Δk ,s±k−Δk+1 ⋅ ⋅ ⋅s

±

k
, (36)

Ãk = Λrk−Δk V†
rk−Δk ,s±k−Δk+1 ⋅ ⋅ ⋅s

±

k
. (37)

The state ∣rk−Δk−1 ⊗ s±k−Δk⟩ is renormalized to ∣rk−Δk⟩ according to
Urk−Δk−1s±k−Δk ,rk−Δk ,

∣rk−Δk⟩ = ∑
rk−Δk−1 ,s±k−Δk

∣rk−Δk−1s±k−Δk⟩Urk−Δk−1s±k−Δk ,rk−Δk. (38)
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The pairwise influence functional between rk−Δk−1 and k′′ (k′′ > k),
together with the pairwise influence functional between s±k−Δk and
k′′, is renormalized to

Ĩk−Δk,k′′ ∶= Ĩk−Δk,k′′(rk−Δk, r′k−Δk, s±k′′), (39)

Ĩk−Δk,k′′ = ∑
rk−Δk−1 ,r′k−Δk−1 ,s±k−Δk

U†
rk−Δk ,rk−Δk−1s±k−Δk

× Ĩk−Δk−1,k′′ Ik−Δk,k′′Ur′k−Δk−1s±k−Δk ,r′k−Δk
. (40)

Correspondingly,

f̃ k+1 = Ĩk−Δk,k+1

k+1

∏
k′=k−Δk+1

Ik′ ,k+1. (41)

It should be noted that only the pairwise influence functional
between k − Δk and k′′ (k′′ > k) should be renormalized because
the others between k − Δk and k′′ (k′′ ≤ k) within the memory
truncation length have already been considered exactly.

The weight of the renormalized states ∣rk−Δk⟩ is

Wk−Δk ∶=Wk−Δk(rk−Δk), (42)

Wk−Δk = ∑
rk−Δk−1 ,s±k−Δk

Wk−Δk−1Urk−Δk−1s±k−Δk ,rk−Δk. (43)

The reduced density matrix of the system is

ρ(kΔt) = ∑
rk−Δk ,s±k−Δk+1 ,...,s±k−1

Wk−ΔkÃk. (44)

The overall algorithm is shown in Algorithm 1. The arrows in
Algorithm 1 indicate that the variables on the left are calculated from
the variables on the right, based on the equation that follows. The
schematic diagram is shown in Figs. 1(b) and 1(c). Figure 1(c) shows
the following key steps in the renormalization process: (i) unfold-
ing ARDT by separating the auxiliary time slice and the leftmost
normal time slice from the other time slices; (ii) decomposing ARDT
by SVD and retaining only the dominant components to form the
new auxiliary time slice and basis states.

Compared to the memory truncation scheme in the original
iQuAPI, where the influence functional is sharply truncated when
the time interval exceeds a preset ΔkΔt, the new truncation scheme
introduces an auxiliary time slice. The renormalized pairwise influ-
ence functional between the auxiliary time slice and the future time
slices retains the most important memory effect beyond the preset
maximal time interval, although it is not exact. As a result, we expect
that the new memory truncation scheme can improve the results of
conventional iQuAPI, especially for problems with long memory.
Due to the different features of these two truncation schemes, we
refer to the new truncation scheme as the soft truncation scheme
(ST) and the conventional truncation scheme as the hard truncation
scheme (HT) in the following.

In ST-QuAPI, the basis states of the auxiliary time slice are
renormalized recursively and selected adaptively during the time

ALGORITHM 1. iQuAPI algorithm with a memory truncation scheme based on
DMRG.

1: procedure PREPARE SYSTEM PROPAGATOR (Ĥ1, Δt)
2: Kk−1,k ← Ĥ1, Δt ⊳ Eq. (10)
3: return Kk−1,k
4: end procedure

5: procedure PREPARE INFLUENCE FUNCTIONAL (ηk′k)
6: for k = 1→ N do
7: for k′ = 1→ k do
8: Ik′k ← ηk′k ⊳ Eq. (12)
9: fk ← Ik′k ⊳ Eq. (15)
10: end for
11: end for
12: return Ik′k, fk
13: end procedure

14: procedure EVOLUTION PROCESS (Ik′k, fk, Kk−1,k)
15: A1, ρ(Δt)← K01, f1, ρ(0) ⊳ Eq. (18)
16: for k = 2→ N do
17: if k ≤ Δk then
18: Ak ← Ak−1, fk, Kk−1,k ⊳ Eq. (17)
19: ρ(kΔt)← Ak ⊳ Eq. (19)
20: if k = Δk, ÃΔk, f̃ Δk+1 ← AΔk, fΔk+1
21: else
22: Āk ← Ãk−1, f̃ k, Kk−1,k ⊳ Eq. (35)
23: U, Λ, V†

← SVD[Āk] ⊳ Eq. (36)
24: Ãk ← Λ, V†

⊳ Eq. (37)
25: Ĩk−Δk,k′′ ← U, Ĩk−Δk−1,k′′ , Ik−Δk,k′′ ⊳ Eq. (40)
26: f̃ k+1 ← Ĩk−Δk,k+1, Ik′ ,k+1 ⊳ Eq. (41)
27: Wk−Δk ← U, Wk−Δk−1 ⊳ Eq. (43)
28: ρ(kΔt)←Wk−Δk, Ãk ⊳ Eq. (44)
29: end if
30: end for
31: return ρ(kΔt)
32: end procedure

propagation according to the singular values Λr of ARDT and the
preset cutoff ξ. Unlike HT-QuAPI in which only the parameter Δk
determines the accuracy, in ST-QuAPI, the SVD cutoff ξ also deter-
mines the accuracy. When the cutoff ξ is 0, meaning that all the
basis states are retained, the approach reverts to the exact QuAPI no
matter what Δk is, yielding exact results since any unitary transfor-
mation between the basis states does not alter the results. Otherwise,
the distribution of the singular values Λr with the index of renor-
malized state r is very important, which characterizes the strength of
temporal correlation. When Λr decays very fast with r, only a small
number of renormalized states need to be retained; in this case, the
new truncation scheme is effective. When Λr decays very slowly with
r, a large number of renormalized states should be retained to ensure
a high accuracy. The worst case is that Λr is equal for different r,
indicating that the temporal correlation between the historical time
slices and future time slices at this time point is extremely strong. In
this case, all the states must be retained and any truncation scheme is
invalid.
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We briefly analyze the computational scaling of the ST-QuAPI
method. For HT-QuAPI, the computational scaling is O(d2Δk

) from
the contraction of Ak−1 fkKk−1,k. Compared to HT-QuAPI, the con-
traction in ST-QuAPI scales as O(M2d2Δk

) because of the extra
auxiliary time slice. In addition, an SVD process is needed to obtain
the renormalized basis states in each time step, whose scaling is also
O(M2d2Δk

). Thus, the overall computational scaling of ST-QuAPI
is O(M2d2Δk

). In addition to the computational cost, the memory
requirement to store the high dimensional tensor in ST-QuAPI is
O(Md2Δk

), while that in HT-QuAPI is O(d2Δk
). Although the formal

scaling of ST-QuAPI seems larger than that of HT-QuAPI, the size of
Δk is much smaller for ST-QuAPI than HT-QuAPI to get converged
results.

Before closing this section, we will briefly discuss the relation
between our memory truncation scheme and TEMPO. As men-
tioned in the Introduction section, TEMPO takes advantage of
matrix product states (MPS) to approximate ARDT thereby prevent-
ing ARDT from growing exponentially with time steps. Similarly,
the iterative renormalization step in our memory truncation scheme
also essentially constructs an MPS. The main difference lies in that
in our approach, the renormalization matrices are fixed beyond the
truncation length, while the matrices of MPS in TEMPO are all
allowed to be optimized. This difference is similar to that between
infinite DMRG and finite DMRG.52 Although allowing the matrices
to be optimized makes TEMPO more accurate, it is more expen-
sive for long-time dynamics. Therefore, in practical calculations by

TEMPO, the conventional memory truncation scheme is still being
used.33 In this regard, our new memory truncation scheme is com-
patible with TEMPO to replace the currently used scheme to make
it more accurate to capture the memory effect. In other words,
we can use TEMPO to approximate the exact part of ARDT in
ST-QuAPI to enlarge the parts where the influence functional is
treated exactly.

III. RESULTS
In this section, we benchmark the new truncation scheme in the

spin-boson model (SBM). SBM is one of the most celebrated models
to study quantum dissipative dynamics in the condensed phase.1,53

It serves as a testbed to benchmark different quantum dynamics
methods. The Hamiltonian of SBM is written as

Ĥ = εσ̂z + Δσ̂x +∑
i

1
2
(p̂2

i + ω2
i x̂2

i ) + σ̂z∑
i

ci x̂i. (45)

We consider four cases with different parameters.

A. SBM with Debye spectral density
The first two cases adopt the Debye spectral density, J(ω)

= η ωωc
ω2
+ω2

c
. Δ = 1 is used as the unit. Case I has a low temperature

β = 50 and fast bath motion ωc = 5; Case II has a high temperature
β = 0.5 and slow bath motion ωc = 0.25. The other parameters are

FIG. 2. Reduced density matrix ρS(t) of SBM with Debye spectral density. (a)–(c) ⟨σ̂z(t)⟩, Re[ρ01(t)], and Im[ρ01(t)] of SBM with β = 50, ωc = 5 calculated by ST-QuAPI
(blue lines) and HT-QuAPI (conventional iQuAPI, red lines) with different truncation lengths Δk = 1, 2, 4, 6. The black asterisk is the reference calculated by HEOM. The inset
is the bath time correlation function (the solid line is the real part, and the dashed line is the imaginary part). Panels (d)–(f) are the same as panels (a)–(c) but with parameter
β = 0.5, ωc = 0.25.
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ε = 1 and η = 0.5.54,55 We simulate the spin dynamics by iQuAPI
with the proposed soft memory truncation scheme and the con-
ventional hard truncation scheme. The reference results are calcu-
lated with HEOM by QuTiP56 with K = 70, L = 3 for Case I using
Padé expansion and K = 4, L = 20 for Case II using Matsubara
expansion.

Figures 2(a) and 2(c) show ⟨σ̂z(t)⟩ of these two cases with
different Δk. The truncation cutoff of ST is ξ = 10−5. The time step
size is 0.1. The insets are the bath time correlation function of the
two cases characterizing the length of memory time,

C(t) =
1
π∫

∞

0
dωJ(ω)[coth

βω
2

cos ωt − i sin ωt]. (46)

Case II with slow bath motion has a relatively long memory time
(>10), while Case I with fast bath motion has a short memory time
(<1). For the short memory case, ST (blue line) converges much
faster than HT (red line) with respect to Δk. When Δk = 6, ST has
achieved an accuracy where the maximal absolute error εm is smaller
than 0.01 within t ≤ 30. For comparison, when Δk = 6, even though
the curve of HT is qualitatively correct, εm is about 0.1. Even when
Δk = 13, εm is ∼0.03. For the long memory case, the improvement of
ST is much more pronounced. With HT, the convergence of ⟨σ̂z(t)⟩
with Δk is very slow. In addition, the asymptotic behavior with t
seems totally wrong. On the contrary, the error of ST is greatly
reduced even with a very small Δk. With Δk = 6, εm has already
been smaller than 0.02. In addition to the diagonal elements of the
reduced density matrix, the off-diagonal matrix elements are shown
in Figs. 2(b)–2(f). The off-diagonal matrix elements characterize the
coherence between the two system states and are believed to be more
difficult to calculate accurately than the diagonal elements. In both
of these cases, ST can obtain coherence much more accurately than
HT with the same Δk. Compared to HT, the improvement in both
population and coherence demonstrates that the most important
memory effect is indeed captured by the renormalization process
in ST as expected. This improvement is essential for problems with
long memory time as Case II shown in Figs. 2(d)–2(f).

In addition to Δk, the cutoff ξ in SVD is also important for
the accuracy of ST-QuAPI. To evaluate the error brought by SVD
cutoffs, we set a series of cutoffs with the same Δk = 6 for the long
memory case, Case II. In Fig. 3(a), we will get more accurate results if
we take a smaller cutoff. With ξ < 10−4, the maximal absolute error is
less than 0.02. In Fig. 3(b), the number of renormalized states of the
auxiliary time slice grows rapidly at the beginning (during the time
comparable with the bath correlation time), and then, it reaches a
certain value that will become larger as the cutoff ξ decreases. The
final number of renormalized states is 15 ∼ 25.

To monitor the decay of singular values Λr , which indicates
the strength of temporal correlation, we show the singular values
at several time steps in Fig. 3(c). Overall, with the parameters we
considered, the singular values decay quickly with the index of
renormalized states. Moreover, although the singular values increase
with time suggesting the increase in temporal correlation, they
gradually converge to a certain value, meaning that the temporal
correlation is bounded with time. This is consistent with what is
observed in the number of kept renormalized states with a fixed
cutoff shown in Fig. 3(b). The two observations in Fig. 3(c) show
that the singular values decay fast and the temporal correlation is

FIG. 3. (a) Error of ⟨σ̂z(t)⟩ and (b) the number of renormalized states of the auxil-
iary time slice with SVD cutoff ξ = 10−4, 10−5, 10−6 for Case II. (c) The distribution
of singular values Λr after normalization at different times from t = 0.8 to t = 30
with ξ = 10−5.

bounded, ensuring the effectiveness of the new truncation scheme
based on DMRG. The data for Case I are similar to that for Case
II (see the supplementary material Fig. S1). However, whether the
observation is general for other more challenging parameter regimes
needs further investigation.
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B. SBM with Ohmic spectral density
The next two cases we select are what have been studied in

detail by Makri in Ref. 43 with the newly developed small matrix
path integral with extended memory approach (x-SMatPI). It has
been shown that the results calculated by the conventional iQuAPI
approach (Δk = 18) are far from the converged results. We use ST-
QuAPI to simulate the dynamics of the two cases and compare
the results to that of x-SMatPI. Ohmic spectral density is adopted
in these two case, J(ω) = 1

2 παωe−ω/ωc . The parameters are ε = 5, Δ
= −1, ωc = 2, α = 4, and β = 0.1 in Case III and ε = 0, Δ = −1, ωc = 1,
α = 2, and β = 1 in Case IV. The initial bath state is in equilibrium
with the up-spin state, which is realized by shifting the coordinate
of the system in our simulation.57 The time step size and cutoff is Δt
= 0.03 and ξ = 10−6 for Case III and Δt = 0.125 and ξ = 10−6 for Case
IV, respectively.

Figure 4(a) shows the results for Case III. The population ρ00(t)
of ST-QuAPI with Δk = 3 has already converged within t < 35.
The black and violet dashed curve is calculated by x-SMatPI with
r = 18, Δk = 100 and r = 18, Δk = 50. In SMatPI, r is called the entan-
glement length, the detailed definition of which can be found in
the original paper.43 The larger the value of r, the more accurate
is the result. The time step size used in x-SMatPI is Δt = 0.0625
different from ST-QuAPI. The maximum discrepancy between the
result of ST-QuAPI and the most accurate result of x-SMatPI
(r = 18, Δk = 100) is less than 0.01. The number of renormal-
ized states of ST-QuAPI is 4, 12, 17, and 21 with Δk = 1, 2,
3, 4, respectively. Case IV is more demanding than Case III.
Figures 4(b) and 4(c) show ρ00(t) and Imρ01(t) for Case IV. The
discrepancy between ST-QuAPI with Δk = 7 and x-SMatPI with
r = 18, Δk = 100, Δt = 0.25 is also smaller than 0.01. The number of
renormalized states of ST-QuAPI is 12, 28, 36, 43, 52, and 54 with
Δk from 2 to 7, respectively. The comparison between these two
approaches not only demonstrates the correctness of the results but
also reveals the effectiveness of ST-QuAPI in capturing the long
memory effect by influence functional renormalization.

IV. CONCLUSION AND OUTLOOK
In this work, we propose a new memory truncation scheme for

iterative QuAPI to simulate the quantum dynamics of system–bath
coupled problems. The conventional memory truncation scheme
used in iterative QuAPI discards all the influence functional beyond
a preset time interval, which is not effective for problems with long
memory time. Instead, our memory truncation scheme selects and
retains the most important parts of the originally discarded influ-
ence functional to improve the accuracy. The criterion for selection
is to minimize the difference between the augmented reduced den-
sity tensor before and after truncation, realized by the density matrix
renormalization group algorithm. As a result, an auxiliary time slice
that contains partial information of the history is constructed adap-
tively and iteratively and so is the influence functional between the
effective time slice and future time slices. Therefore, the new mem-
ory truncation scheme is more effective than the conventional one,
especially for problems with long memory time. This is the main
contribution of this work.

We have demonstrated the effectiveness of the improved mem-
ory truncation scheme by simulating the quantum dynamics of
the spin-boson model. Four different parameter sets are adopted,
including Debye spectral density and Ohmic spectral density. In all
four cases, our scheme converges much more quickly with the trun-
cation length than the conventional memory truncation scheme. By
examining the singular values of ARDT over time, whose distribu-
tion characterizes the temporal correlation of the system, we found
that in the studied cases, the singular values decay quickly with the
indices of renormalized states and the total temporal correlation
over time is bounded. This observation indicates the effectiveness
of selecting basis states via the DMRG algorithm.

Essentially, our new memory truncation scheme is an improved
version of iQuAPI. Any other method that can be combined with
iQuAPI can also be combined with our method to handle prob-
lems with a much longer memory. For instance, by applying it
to calculate the dynamical maps within the memory length, we

FIG. 4. (a) Population ρ00(t) for SBM Case III and (b) ρ00(t) and (c) Imρ01 for SBM Case IV calculated by ST-QuAPI with SVD cutoff ξ = 10−6 and with different Δk. The
dashed lines are the result calculated by x-SMatPI in Ref. 43. The detailed parameters of SBM and other setups are given in the text.
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can propagate the reduced density matrix to arbitrarily long times
with the transfer tensor method.58 Our method is also compatible
with the recently developed time-evolving matrix product operator
approach.33 TEMPO uses a matrix product state to approximate
the exponentially large augmented reduced density tensor, thereby
greatly reducing the computational cost, especially suitable for prob-
lems with multiple system states and long memory time. The
same truncation scheme as iQuAPI has been adopted to simulate
long-time dynamics. We expect that with our truncation scheme,
the accuracy of TEMPO will further increase. Related studies are
currently being carried out in our group.

SUPPLEMENTARY MATERIAL

See the supplementary material for the proof of exactness of
ST-QuAPI when ξ = 0 and the change of the number of renormal-
ized states and singular value distribution with time of SBM Case I
as shown in Fig. 3.
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