
Time-Dependent Density Matrix Renormalization Group Algorithms
for Nearly Exact Absorption and Fluorescence Spectra of Molecular
Aggregates at Both Zero and Finite Temperature
Jiajun Ren,† Zhigang Shuai,*,† and Garnet Kin-Lic Chan*,‡

†MOE Key Laboratory of Organic OptoElectronics and Molecular Engineering, Department of Chemistry, Tsinghua University,
Beijing 100084, People’s Republic of China
‡Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States

*S Supporting Information

ABSTRACT: We implement and apply time-dependent
density matrix renormalization group (TD-DMRG) algorithms
at zero and finite temperature to compute the linear absorption
and fluorescence spectra of molecular aggregates. Our
implementation is within a matrix product state/operator
framework with an explicit treatment of the excitonic and
vibrational degrees of freedom, and it uses the locality of the
Hamiltonian in the zero-exciton space to improve the efficiency
and accuracy of the calculations. We demonstrate the power of
the method by calculations on several molecular aggregate
models, comparing our results against those from multilayer
multiconfiguration time-dependent Hartree and n-particle
approximations. We find that TD-DMRG provides an accurate
and efficient route to calculate the spectrum of molecular aggregates.

1. INTRODUCTION

The effects of aggregation on the optical and transport
properties of molecular aggregates and polymers, such as
aggregation induced emission (AIE) in the siloles1 and ultrafast
energy transfer in the photosynthetic light harvesting
complexes (LHC),2 have attracted tremendous attention in
the past decades. Understanding the change in the linear
spectrum moving from a single molecule to an aggregate is
usually the first step to understand the effects of aggregation.
Theoretically, the quantitative calculation of the spectrum of
molecular aggregates is challenging, as it is a problem of
coupled many-particle quantum dynamics, including both
excitonic coupling and exciton-vibrational (phonon) coupling.3

Though perturbative methods are very successful in treating
the two limiting coupling regimes4,5the weak excitonic
coupling regime and the weak exciton-vibrational coupling
regimemany interesting systems, such as the LHC, lie in the
intermediate coupling regime and remain challenging to model
accurately, motivating the development of a wide variety of
approximate modeling methods.6−17

Current numerically exact approaches for the intermediate
coupling regime work within one of two representations. The
first representation is most closely associated with the theory of
open quantum system dynamics and dissipative dynamics.
Here the whole problem is divided into a system (usually
containing the electronic degrees of freedom) and an
environment (usually containing the vibrational degrees of

freedom). Then, an effective equation of motion for the system
part only is derived by eliminating the environmental degrees
of freedom, assuming a linear system-environment coupling,
and with the environment typically approximated as an infinite
harmonic bath described by a continuous spectral density.
Some representative numerically exact methods using this
representation include the hierarchical equation of motion
method (HEOM),6,7 stochastic Schrödinger equation (SSE),8,9

hybrids of HEOM and SSE,10,11 and the quasi-adiabatic
propagator path-integral (QUAPI) method.12 In the second
representation, the whole problem is treated explicitly as a
closed finite-dimensional system, with discrete vibrational
degrees of freedom. Some numerically exact methods
commonly employed for such problems include exact
diagonalization (ED) and the multiconfiguration time-depend-
ent Hartree (MCTDH) method.17

The density matrix renormalization group (DMRG)
methods we use in this work are formulated within the second
representation, and thus, the most relevant methods to
compare against are ED and MCTDH. Full ED, whether
applied to the zero-temperature linear spectrum18 or within the
more recent finite-temperature Lanczos formulation,19,20 is
limited to very small systems, as the dimension of the Hilbert
space increases exponentially with system size. To overcome
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the exponential wall in full ED, systematically improvable
approximations can be introduced to reduce the cost, akin to
the configuration interaction hierarchy in quantum chem-
istry.21,22 One popular example is the so-called “n-particle
approximation”,13−16 in which only the electronically excited
molecule and at most n−1 nearest ground state molecules are
allowed to be simultaneously vibrationally excited. The
motivation for this restricted Hilbert space is that a local
exciton should only disturb phonon modes nearby, creating an
“exciton polaron”.23 Note that the n-particle approximation is
also used outside of the ED context; for example, it has
recently been used in HEOM to improve efficiency.24 Though
the n-particle approximation method has been applied to
explain many features of the spectra of conjugated polymers
and molecular aggregates,23,25 the lowest level two-particle
approximation is still too expensive to treat intermediate-sized
aggregates with multiple phonon modes, such as multiple
molecules with more than 10 modes per molecule, the latter
being essential to obtain fine structure in the spectrum.15

MCTDH is an alternative numerically exact method, based on
a low rank tensor representation of the time-dependent wave
function. Its generalizationmultilayer MCTDH (ML-
MCTDH)has become a popular approach to numerically
converge toward the exact quantum dynamics of systems with
dozens or even hundreds of quantum degrees of freedom.26,27

Two algorithms have previously been described to include
finite-temperature effects within MCTDH. The first is based
on statistical sampling of wave functions from an initial thermal
ensemble.28,29 This approach is numerically efficient in cases
when convergence can be reached without too many samples,
for example, at low temperatures. However, the scale of
temperature is defined relative to the frequencies in the
problem; thus, in systems with low frequency modes, where
high quanta states would be populated even at room
temperature, such an algorithm is not very efficient. The
second directly propagates the density matrix of the mixed
state by Liouville’s equation and is called ρ-MCTDH. It was
first explored by Raab et al. in 199930,31 and is based on the
finite-temperature time-dependent variational principle
(TDVP). Unlike the first approach, ρ-MCTDH does not
introduce statistical error. However, to our knowledge, the
algorithm has not been widely used. One drawback is that
propagating the density matrix is more expensive than
propagating the wave function. Another drawback is that,
unlike at zero temperature, the finite-temperature TDVP that
was used violates the conservation of the total energy and
density matrix trace.32

In the current work, we consider an alternative numerical
approach to obtain near-exact zero-temperature and finite-
temperature spectra, via the time-dependent density matrix
renormalization group (TD-DMRG). Much like ML-
MCTDH, the DMRG is based on a low-rank tensor
representation of the wave function. It was originally proposed
by White to treat one-dimensional strongly correlated systems,
where it has become the method of choice to compute low-
lying eigenstates.33,34 The DMRG was subsequently extended
to frequency-dependent dynamic properties, via the Lanczos
DMRG,35 correction-vector DMRG,36 and the dynamical
DMRG methods.37 These closely related algorithms all provide
dynamic properties at zero temperature in the frequency
domain. DMRG algorithms have also been formulated at finite
temperature. The earliest attempts used renormalization of the
transfer matrix (TMRG),38−40 but more systematic finite-

temperature formulations emerged out of time-dependent
density matrix renormalization group (TD-DMRG) algo-
rithms,41−50 which also provide a route to real-time zero-
temperature dynamical properties. In particular, the thermal
state can be obtained by imaginary time-propagation (either
within a purified state formalism or via propagation of
operators) and subsequent propagation along the real-time
axis then allows for the computation of finite-temperature
dynamical quantities.51−54

DMRG methods have been applied to a wide variety of
problems in chemical physics. Semiempirical DMRG and ab
initio DMRG methods have been developed in the last two
decades for molecular quantum chemistry problems55,56

including for the calculation of dynamical properties.50,57

DMRG methods have also been applied to electron−phonon
problems, including the spin-Peierls model,58 and to the single-
mode Holstein model.59−61 Finally, TD-DMRG methods have
been recently applied to open quantum system dynamics, both
in the context of impurity problems,62−65 as well as traditional
system-bath models.66−70

In this work, we develop TD-DMRG algorithms for zero-
and finite-temperature dynamic properties of electron−
phonon-coupled systems, as applied to the linear absorption
and fluorescence spectra of electron−phonon-coupled molec-
ular aggregates. As a nonperturbative method, we will show
that these algorithms allow us to compute accurate spectra
across any range of coupling strengths. Furthermore, we will
demonstrate that the high efficiency of the TD-DMRG
algorithm allows us to calculate the spectrum for a system as
large as an 18 monomer distyryl benzene (DSB) aggregate,
including the fine structure from the phonon modes.
The remaining sections of this paper are arranged as follows.

In Section 2, we first define the Hamiltonian of the exciton
model used in this work. Next, we describe the zero- and finite-
temperature TD-DMRG methods used to calculate the
absorption and fluorescence spectra and provide some
computational details. In Section 3, the absorption and
fluorescence spectra of both model and real systems are
calculated and compared to that from ML-MCTDH, the n-
particle approximation, and experimental spectra. Finally, we
present our conclusions in Section 4.

2. THEORY
2.1. Model Hamiltonian. To map the spectral problem for

a set of molecular aggregates to a practically solvable model, we
first make several (reasonable) approximations:

(i) The electronic excited states of a molecular aggregate are
a linear combination of the local excited states of a single
molecule.

(ii) The motion of the nuclei can be described as a
collection of independent harmonic vibrations.

(iii) Only intramolecular vibrations are considered to be
linearly coupled to the local electronic state, where the
frequency ω of each vibration is the same for both the
ground and excited states.

The combination of the second and third approximations is
usually referred to as the “displaced harmonic oscillator”
approximation. Within these approximations, we can map the
Hamiltonian of a molecular aggregate to a multimode Holstein
Hamiltonian, sometimes called the “Frenkel” or “Frenkel−
Holstein” Hamiltonian. In addition, we can add additional
processes to the Hamiltonian, relaxing the above three

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.8b00628
J. Chem. Theory Comput. 2018, 14, 5027−5039

5028

http://dx.doi.org/10.1021/acs.jctc.8b00628


assumptions, such as intermolecular charge-transfer
states,16,71,72 anharmonic vibrational effects,73 and intermo-
lecular electron−phonon interactions (Peierls terms). For
simplicity, however, we will only consider the Holstein
Hamiltonian in this work.
Choosing harmonic oscillator wave functions within the

ground state potential energy surface as the vibrational basis,
the Hamiltonian can be formulated in second quantization

∑ ∑

∑ ∑

ε

ω ω

̂ = +

+ + +

† †

† † †

H a a J a a

b b g a a b b( )

i
i i i

ij
ij i j

in
in in in

in
in in i i in in

(1)

εi is the local excited state energy of molecule i; Jij is the
excitonic coupling between molecule i and j; ωin and gin are,
respectively, the harmonic frequency and electron-vibrational
coupling parameter of normal mode n of molecule i. Another
alternative parameter frequently used to represent the strength
of electron-vibrational coupling is Huang−Rhys factor S, where
S = g2. All the parameters can be obtained from ab initio
quantum chemistry calculations of monomers and dimers, or
fitted to experimental data. The vibrational modes in eq 1 are
considered to be discrete, as is appropriate for single molecules
or small aggregates. In contrast, in the condensed phase, one
often describes the behavior of the macroscopic bath in terms
of a continuous spectral density function

∑ω π ω δ ω ω= −J g( ) ( ) ( )i
n

in in in
2

(2)

To use the methods in this work with such a formulation,
one has to first discretize the spectral density. There are many
such discretization algorithms that have been explored in
studies of quantum impurity problems and to describe open-
system quantum dynamics.64,74−77 We will only consider the
discrete modes associated with molecular aggregates here, and
thus, we will not dive further into the details of discretizing a
continuous bath.
2.2. MPS, MPO, ZT-TD-DMRG, and FT-TD-DMRG. The

theory of DMRG and its associated algorithms has been
described in detail in many excellent reviews.78 Here, to be
self-contained, we only briefly summarize the most essential
parts.
2.2.1. MPS and MPO. DMRG is a wave function theory,

where the many-body wave function amplitudes are obtained
by multiplying out a chain of local matrices (thus giving rise to
the moniker, matrix product state (MPS)),

∑

∑

σ σ σ

σ σ σ

|Ψ⟩ = | ⟩

= | ⟩

σ
σ σ σ

σ

σ σ σ

{ }

{ } { }
−

μ

μ μ

μC

A A A

n

a
a a a a n

1 2

,
1 2

n

n
n

1 2

1
1

1 2
2

1

(3)

an is the virtual bond index, whose “bond dimension” controls
the accuracy of a DMRG calculation and the amount of
entanglement captured by the MPS. σn is called the physical
bond index, and it indexes the degrees of freedom of a single
site. The MPS can be represented graphically as shown in
Figure 1a. There is a gauge freedom (redundancy in
parametrization) in the MPS which can be fixed by requiring
the matrices to the left or right of any given bond to satisfy
respectively the left and right orthogonality conditions,
∑σA

σ†Aσ = I, ∑σA
σAσ† = I, respectively (see Figure 1b,c).

The structure of the MPS wave function is related to that of
the ML-MCTDH wave function. In particular, the ML-
MCTDH wave function can be thought of as a tree
factorization of the wave function amplitudes, also known as
a tree tensor network state.79 Thus, viewed from the ML-
MCTDH perspective, the linear chain of matrices in the MPS
formally corresponds to a maximally unbalanced tree, although
such a tree structure is seldom used in ML-MCTDH. An
advantage of the MPS structure over a more general tree is that
almost all numerical operations can be implemented as simple
matrix operations rather than more general tensor contrac-
tions. In practical applications, this can lead to higher
efficiency.80

In the Holstein model we consider, there are both exciton
and vibrational physical degrees of freedom. We associate each
exciton and each vibration with its own matrix Aσ where σ
indexes the exciton or vibrational state. The exciton site has
two states, |0⟩ representing the electronic ground state and |1⟩
representing the electronic excited state. The vibrational site
has p states, |0⟩, |1⟩, ···|p−1⟩ representing the number of
phonons (in principle p is infinite, but at low temperature, we
can converge static and dynamic properties with a finite p). In
addition, the MPS is not invariant to the order in which the
degrees of freedom are treated. We order the exciton and
vibration degrees of freedom by molecule, that is e1, ν11, ..., ν1n,
..., ei, νi1, ..., νin, ...(ei is the exciton site of molecule i, νin is nth
mode of molecule i).
When constructing MPS algorithms, it is convenient to

consider a related factorization of operators. There, operator
matrix elements are obtained by multiplying out a chain of
local matrices, giving rise to a matrix product operator (MPO)

∑ σ σ σ σ σ σ̂ = ′ ′ ′ | ⟩⟨ ′ ′ ′ |
σ σ

σ σ σ σ σ σ

{ } { } { ′}
−

μ μ μO W W W
a

a a a a n n
, ,

, , ,
1 2 1 2n

n n
1
1 1

1 2
2 2

1

(4)

Similar to the gauge freedom in an MPS, there are many
choices of local matrices in the MPO which multiply out to the
same total operator Ô.81 One optimal way to construct the
MPO of the Holstein Hamiltonian in our work is given in
Appendix A.
To approximate a quantum ground state, we optimize the

MPS matrices following the variational principle. Rather than
optimize all matrices simultaneously, one typically optimizes
the matrices one at a time, and this is the basis of the one-site
DMRG algorithm. At each optimization step, the sites are
partitioned into two blocks, A and B, and an eigenvalue
equation is solved in a space spanned by the direct product of
the A and B block basis states |l⟩A⊗|r⟩B, defined by the MPS
matrices to the left and right of the partitioning bond,

Figure 1. Graphical representation of (a) an MPS for Ψ (b) the left
orthogonality condition (c) the right orthogonality condition (d) an
MPO for Ô (e) the ground-state eigenvalue equation for Ĥψ = λψ.
Each linked bond represents a tensor contraction.
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respectively. If the gauge has been fixed such that sites in block
A and block B satisfy left and right orthogonality conditions,
then the eigenvalue equation takes the form

∑ ψ ψ=
′ ′

′ ′ ′ ′H E
l r

lrl r l r lr
(5)

The quantities in the matrix eigenvalue equation and the
block basis states are most easily visualized graphically (see
Figure 1e). The eigenvalue problem in eq 5 can be computed
iteratively by the Davidson algorithm via series of tensor
contractions with cost O(2pM3D + p2M2D2) in each iteration,
giving a total cost of O(kekν(2pM

3D + p2M2D2)) for one sweep
of optimization steps over all sites. Here, ke is the number of
molecules; kν is the number of normal modes of each
molecule; p is the number of local degrees of freedom;M is the
MPS virtual bond dimension; D is the MPO bond dimension.
For the Holstein Hamiltonian, when considering only one-
dimensional nearest-neighbor excitonic couplings, D ∼ const,
otherwise D ∼ ke.
An important MPS algorithm is the compression of a large

bond dimension MPS to a smaller bond dimension MPS.
Compression is necessary because many algebraic operations
involving MPS increase the bond dimension, such as acting an
MPO on an MPS, or adding together two MPS (both
operations are used in the time-dependent algorithms below).
The simplest compression algorithm is the singular value
decomposion (SVD) compression algorithm. Given the wave
function ψlr in eq 5 on a given bond, we decompose it via SVD
as

∑ψ ≈
=

†
M

s U Vlr
d

d ld dr
1 (6)

where sd are the singular values which can be truncated to
some desired number M. Multiplying the truncated U and V
matrices into the matrices to the left and right of the bond
reduces the bond dimension joining the two matrices. The
compression can then be repeated for the next bond and
iterated through the entire MPS. A closely related compression
algorithm is the variational compression algorithm, where a
compressed |ψ̃⟩ with the desired reduced bond dimension is
optimized to minimize the L2 norm |||ψ⟩−|ψ̃⟩||2, leading to a set
of least-squares equations to be solved at each site. In this
work, we employ the SVD algorithm for our MPS
compressions.

2.2.2. ZT-TD-DMRG and FT-TD-DMRG. We now describe
the zero-temperature and finite-temperature time-dependent
DMRG algorithms. For zero-temperature TD-DMRG (ZT-
TD-DMRG), we consider the initial state to be the ground-
state MPS obtained via the above DMRG algorithm within a
given exciton number sector (we track the exciton number as a
good quantum number in the MPS sweep), that is, the zero-
(one-) exciton space for absorption(fluorescence). We then
need to propagate the state under the time-independent
Hamiltonian propagator e−iĤt. In the language of MPS and
MPO, the task is to approximate the propagator as an MPO
and the subsequent time-evolved state as an MPS in a
computationally efficient manner. There are several choices for
how to do this, ranging from Suzuki−Trotter decompositions
that are most natural for Hamiltonians with short-range
interactions,43 to time-step targeting and other techni-
ques46,57,82 designed for Hamiltonians with long-range
interactions.
We use the classical fourth-order Runge−Kutta (RK4)

algorithm together with an MPO representation of the full
Hamiltonian to carry out a single time-step propagation

τ τ

τ τ

τ τ

τ τ

| ⟩ = − ̂ |Ψ ⟩

| ⟩ = − ̂ + |Ψ ⟩ + | ⟩
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i
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jjj

y
{
zzz

i
k
jjj

y
{
zzz

k iH t t

k iH t t k

k iH t t k

k iH t t k

t t k k k k

( ) ( )

( /2) ( )
1
2

( /2) ( )
1
2

( )( ( ) )

( ) ( )
1
6

( 2 2 )

1

2 1

3 2

4 3

1 2 3 4

(7)

Here, τ is the time step, Ĥ(t) is an MPO and each wave
function |ki⟩ is an MPS. The stable region for the time step τ
requires the RK4 propagator to have modulus <1. As described
in the Supporting Information (SI) (section 1), for real-time
propagation, τ·e < 2.828, and for imaginary time propagation,
τ·e < 2.785, where e is the absolute maximal eigenvalue of Ĥ. In
practice, to simulate with as large a time-step as possible, one
usually defines Ĥ(t) with the lowest state energy subtracted.
Note that for time independent Hamiltonians, the RK4
method reverts back to eq 8, which is nothing but a fourth-
order Taylor expansion of e−iĤτ around time 0.

Figure 2. Graphical representation of (a) ⟨Ô(t)⟩ at zero temperature (b) the density operator e−βĤ (c) ⟨Ô(t)⟩ at finite temperature. The long line
linking the top and bottom physical bonds represents a trace. Compression is carried out after each application of the unitary propagator in
ascending time in (a), (b), and (c).
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τ τ τ τ≈ + − + −
!

+ −
!

+ −
!

τ− iH
iH iH iH

e 1 ( )
( )

2
( )

3
( )

4
iH

2 3 4

(8)

During each time step propagation, Ĥ·Ψ is carried out for
four times. At each time, the virtual bond dimension an of MPS
is enlarged by a factor of D and thus needs to be compressed.
We carry out compression back to the desired bond dimension
M using the SVD algorithm described previously. Overall, the
graphical representation of the expectation value ⟨O(t)⟩ at zero
temperature computed using ZT-TD-DMRG is shown in
Figure 2a.
For finite-temperature TD-DMRG (FT-TD-DMRG), we

must first represent the initial thermal state in matrix product
form. The most common method to achieve this is via the
thermo field dynamics approach (or called “purification” or
“ancilla” approach).51−53,83,84 The basic idea is to represent a
mixed state density operator as a partial trace of a pure state
density operator in an enlarged space, namely, the physical
space P ⊗ an auxiliary space Q. The simplest choice is to
choose Q identical to the physical space P

∑

∑

ρ ̂ = | ⟩⟨ | = |Ψ⟩⟨Ψ|

|Ψ⟩ = | ⟩ | ⟩

s i i

s i i

Tr
i

i Q

i
i P Q
1/2

(9)

Then, the thermal equilibrium density operator can be
expressed as

∑

ρ
β

̂ = =
|Ψ ⟩⟨Ψ |
|Ψ ⟩⟨Ψ |

|Ψ ⟩ = |Ψ ⟩ |Ψ ⟩ = | ⟩ | ⟩

β
β β

β β

β
β

− ̂

− ̂
∞ ∞

e
Z

e i i

( )

Tr

Tr

,

H
Q

PQ

H

i
P Q

eq

/2

(10)

where Ĥ = ĤP⊗IQ̂ and |Ψ∞⟩ is an unnormalized product of
maximally entangled states between each physical site and a
corresponding auxiliary site. To obtain |Ψβ⟩, imaginary time
propagation is carried out on the initial state |Ψ∞⟩, and once
temperature β is reached, real-time propagation is carried out
on |Ψβ⟩. Since all operations are on pure states, the finite-
temperature algorithm can be implemented using exactly the
same code as the zero-temperature algorithm, the only
difference being that the total size of the system (i.e., the
number of sites) is increased by a factor of 2. However, in
terms of MPO’s, we can equivalently understand the finite-
temperature method as a direct propagation of the density
matrix, eliminating the need for ancillas54 (see Figures 2b,c). In
this case, the initial infinite-temperature density matrix |Ψ∞⟩ is
simply an identity operator in the Hilbert space and is an MPO
with bond dimension 1. Then the thermal equilibrium density
operator can be expressed as

= ̂ ̂β β β− ̂ − ̂ − ̂e e IIeH H H/2 /2 (11)

To carry out the MPO time propagation, MPO compression
is carried out at each step by interpreting an MPO as an MPS
where the two physical indices on each site are viewed as the
physical index of an MPS in an enlarged space, making the
MPO compression identical to the MPS compression in the
ancilla picture. Note that the initial high-temperature density
matrix I ̂ can in principle be replaced by any unitary operator Û,
since

= ̂ ̂β β β− ̂ − ̂ † − ̂e e UU eH H H/2 /2 (12)

and this degree of freedom has recently been used to reduce
the entanglement growth and thus cost of time propagation.85

In our FT-TD-DMRG implementation, we use the MPO
propagation formulation starting from an initial identity
operator.
The most time-consuming part in the TD-DMRG algorithm

is the SVD compression. The computational scaling of the
SVD compression is roughly O(NkekνpM

3D3) for ZT-TD-
DMRG and O(Nkekνp

2M3D3) for FT-TD-DMRG (N is the
number of propagation steps). We see that the only difference
in formal scaling arises from the increase in physical bond
dimension going from ZT to FT (p to p2). However, the bond
dimension M necessary for a given accuracy will be different in
the finite-temperature and zero-temperature formulations. To
see this, consider the zero-temperature limit or a pure state,
where the density matrix in the FT-TD-DMRG formulation
can be trivially expressed as

∑

∑
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σ σ σ σ σ σ
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(13)

where dim(bi) = dim(ai)·dim(a′i). This shows that the bond
dimension for a given accuracy in the FT-TD-DMRG at low
temperature is the square of that in the ZT-TD-DMRG
formulation.
With ZT-TD-DMRG and FT-TD-DMRG, the absorption

and fluorescence spectra can be calculated by taking the
Fourier transform of the dipole−dipole time correlation
function.

∫σ ω
π

∝ ω

−∞

+∞
dte C t( )

1
2

( )i t
abs(emi) (14)

μ μ= ⟨ ̂ ̂ ⟩C t t( ) ( ) (0) g e( ) (15)

The subscript g(e) represents the zero-(one-) exciton
ground (excited) state space. The bracket denotes the lowest
energy state expectation value at zero temperature and the
thermal equilibrium average at finite temperature. The
frequency dependence of the prefactor is, respectively, ω and
ω3 for the absorption and emission cross section. To apply a
Gaussian broadening in the frequency domain (convolving the
original spectrum with a Gaussian function), we multiply the
dipole−dipole correlation function in the time domain with a
Gaussian function (pointwise) before the Fourier transform

′ = −C t C t e( ) ( ) t t( / )Gaussian
2

(16)

where the connection between broadening in the time domain
and in the frequency domain is provided by the Convolution
Theorem.

2.3. Computational Optimizations. We now consider
some techniques to improve the efficiency and accuracy of
time propagation for the specific case of the Holstein
Hamiltonian. When calculating the linear spectrum, the excited
state is in the one-exciton space, while the ground state is in
the zero-exciton space. In the zero-exciton space, the
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Hamiltonian in eq 1 becomes trivialonly the vibrational
energy terms survive. These terms are local and commute with
each other

∑ ω̂ = †H b bg
in

in in in
(17)

Thus, unlike the propagator in the one-exciton space that is
approximated by the RK method, the propagator in the zero-
exciton space can be exactly represented as an MPO with bond
dimension 1

= ···− ̂ − ̂ − ̂ − ̂e e e eiH t iH t iH t iH tg g g gn1 2 (18)

Therefore, time propagation in the zero-exciton space is
exact and MPS compression is not required.
For example, the dipole−dipole time correlation function in

eq 14 for the zero-temperature fluorescence spectrum is

μ μ= ⟨Ψ | ̂ |̂Ψ ⟩− ̂C t e( ) (0) e (0)iE t
e

iH t
e

e g (19)

Here, |Ψe(0)⟩ and Ee are the wave function and energy of the
lowest excited state in the one-exciton space. Since the single
lowest excited state can be accurately obtained with the
standard DMRG algorithm with a modest virtual bond
dimension, and the subsequent time propagation under Ĥg
does not increase the bond dimension, the zero-temperature
fluorescence spectrum can be calculated without the cost of a
full TD-DMRG calculation. Note that the same technique can
be applied to other observables where propagation is restricted
to the zero-exciton space.
Another potential optimization in TD-DMRG is to carry out

a basis transformation to minimize the growth of entangle-
ment. In the Holstein Hamiltonian in eq 1, every exciton site is
coupled to a set of vibration sites, leading to a “star-like”
topology for the exciton−phonon interactions. An alternative
topology is a “chain” topology that can be obtained via a
unitary rotation of the vibrational basis.64,74 We have
compared the two representations in our calculations and
found that the “star” representation generally introduces less
entanglement (see SI section 3). Thus, we use the “star”
representation in our calculations.

3. RESULTS
3.1. Linear Spectrum of PBI J-Type Aggregates. From

a purely excitonic coupling perspective, two typical aggregation
types have been defined by Kasha.86 One is the J-type
aggregate, where the sign of the excitonic coupling is negative
(assuming the transition dipole moments all point in the same
direction), as is the case for molecules packed in a “head-to-
tail” orientation. In the lowest (highest) excitonic band, the
dipole moments of the molecules interfere constructively
(destructively), so the absorption and fluorescence are
enhanced and red-shifted. Another is the H-type aggregate,
in which the molecules are stacked in a “side-by-side”
orientation, resulting in a positive excitonic coupling. In
contrast to the J-type aggregates, the absorption is blue-shifted,
and the fluorescence is suppressed.
Perylene bisimide dyes (PBI) are prototypical building

blocks for H- and J-type molecular aggregates, and they are
potential candidates for an artificial light-harvesting system.87

The optical properties have been investigated both exper-
imentally and theoretically. Among the reported theoretical
calculations of the linear spectrum of J-type PBI, the ML-
MCTDH calculations by Kühn et al. are probably the most

accurate. The first set of ML-MCTDH calculations were
presented in ref 88 with the largest system treated being a
linear hexamer, including up to 5 vibrational modes per
molecule. Subsequently, improved calculations including 10
modes per molecule were reported.3 The ML-MCTDH
calculations were all at zero temperature, and the finite-
temperature spectrum was not computed.
To verify the correctness of our TD-DMRG implementa-

tion, we first calculated the zero-temperature linear absorption
of a PBI chain, and we compared our results to those from ML-
MCTDH using the parameters of the ML-MCTDH
calculations with 10 phonon modes.3 We used a total evolution
time τ of 20 a.u., N = 20000 time steps, and an SVD cutoff of
10−3. The maximal virtual bond dimension is 42. We applied a
Gaussian broadening C(t)e−(t/tGaussian)2 in the time domain with
tGaussian = 2000 fs.
In Figure 3, we show the zero-temperature absorption

spectrum computed from ZT-TD-DMRG. The spectrum is

essentially identical to that obtained by ML-MCTDH. Two
main vibronic structures can be identified. One is due to a
high-frequency mode ω = 1371 cm−1, S = 0.208 and the other
is due to two modes with similar frequencies and Huang−Rhys
factors ω = 206, 211 cm−1, S = 0.197, 0.215. The remaining
modes cannot be clearly assigned because of their small
Huang−Rhys factors (<0.1).
Using our FT-TD-DMRG implementation, we can further

extend our calculations to obtain the finite-temperature
absorption and fluorescence spectra. We calculated the
spectrum of the PBI dimer at 298 K, which can be compared
against the reported experimental spectrum89 (see Figure 4).
We see that the spectra agree well but the 0−0 transition peak
is slightly shifted from the experimental position. The fine
structure of the room-temperature spectrum is also well
reproduced, except for the absorption peak near 450 nm. This
peak originates from the second local electronic excited state,88

which is not contained in our model Hamiltonian. Unfortu-
nately, there are no finite-temperature MCTDH results
reported for this system for comparison.
In conjunction, our calculations on the PBI systems show

that TD-DMRG is a high level quantum dynamics method and
a practical alternative to ML-MCTDH, achieving good
accuracy at finite as well as at zero temperatures.

Figure 3. Calculated zero-temperature linear absorption spectra of the
PBI monomer, dimer, and hexamer from ZT-TD-DMRG. Each
molecule includes 10 normal modes. The ML-MCTDH results are
from ref 3.
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3.2. TD-DMRG vs the n-Particle Approximation. The
n-particle approximation is a popular method to calculate the
linear spectrum of molecular aggregates. However, for small n,
it is only accurate in the weak excitonic coupling regime. We
now compare TD-DMRG with 1-, 2-, 3- particle approx-
imations in a model chain system, composed of 4 identical
molecules, with nearest-neighbor excitonic coupling and
periodic boundary conditions. We choose each molecule to
have a single vibration mode and for each mode to have up to
8 phonons. Full ED can be carried out as an exact reference in
this system. We use the n-particle approximation with respect
to the Hamiltonian and basis in eq 1, without first carrying out
a Lang−Firsov transformation as is done in some other
works.13,14,23,90 Note that the Lang−Firsov transformation for
an infinite phonon space is unitary, but for a truncated phonon
space, it is not. Thus, the results with or without Lang−Firsov
transformation will be a little bit different, but this difference
will be negligible at low temperatures.
We calculated the zero- and finite-temperature absorption

and fluorescence spectra for both J- and H- type aggregates.
We set the Huang−Rhys factor to 1.0, the temperature to be
kbT = ℏω0 and varied the excitonic coupling to the exciton−
phonon coupling ratio J/gω0. The SVD cutoff in ZT-TD-
DMRG was set to 10−4 and that of FT-TD-DMRG to 10−3.
For a direct comparison with TD-DMRG, the full ED and n-
particle approximation spectra were also obtained by time-
propagation. All propagations were carried out with a time step
τ =

ω
0.032

0
and a total number of steps N = 20000. A small

Gaussian broadening was applied to increase the smoothness
of the spectrum, =

ω
tGaussian

131

0
. To compare the various

spectra, we use the relative error of the spectrum compared to
the exact result from full ED

σ ω σ ω ω

σ ω ω
=

∑ | − |

∑
=

=

d

d
relative error

( ) ( )

( )
i
N

i i

i
N

i
method

1 method exact

1 exact

(20)

where ωi is a discrete point in the frequency domain and σ(ωi)
is the strength at frequency ωi. The relative error of the
different methods is shown in Figure 5. Note that in the n-
particle approximation, since even the 0−0 energy gaps

changes with n, we shift all the spectra by subtracting the
0−0 energy gap.

Our calculations show that the accuracy of TD-DMRG
greatly surpasses that of n-particle approximation methods in
all cases. The error of FT-TD-DMRG is a little larger than that
of ZT-TD-DMRG calculation, probably due to the larger
cutoff threshold in the SVD. In the coupling regime where J
and gω0 are comparable, also known as the strongly correlated
regime, the virtual bond dimension of the MPS increases much
more rapidly than in the two limiting coupling regimes. This
rapid increase in bond dimension coincides with the
breakdown of perturbation theory in this regime.
For the n-particle approximation, we find a wide variation in

the accuracy depending on the simulation regime. In particular,
we find that (i) In the weak excitonic coupling regime J/gω0 =
0.1, the n-particle approximations perform well. However,
when J/gω0 is larger than 0.5, the error is large. There is no
simple trend in the error as a function of J/gω0. (ii) The finite-
temperature spectrum is worse than the zero-temperature
spectrum. When the temperature is increased, in addition to
the single electronically excited molecule itself, additional
molecules in the ground state become vibrationally excited,
which are not included in the n-particle approximation.
Therefore, the n-particle approximation is only good for
targeting the lowest energy states. When high energy states
contribute to the spectrum, the results worsen. (iii) The 1-
particle approximation results for the emission of H-type
aggregates are not reliable, as they overestimate the 0−1
emission (see Figure 6). Taking the dimer as an example, the
vector |e1ν1,e2ν2⟩ denotes an occupation representation of the
dimer basis. (|ei⟩ represents an exciton, |νi⟩ represents a
vibrational mode). In the 1-particle approximation space, only
the |10,00⟩, |00,10⟩, |11,00⟩, |00,11⟩ states are considered. The
last two basis states contribute to the 0−1 emission strength.
The |01,10⟩, |10,01⟩ states which are included in the 2-particle
approximation, do not appear. However, these two neglected
basis states are important because they directly electronically
couple to |11,00⟩, |00,11⟩. In H-type aggregates, the wave
function amplitudes for |11,00⟩ and |01,10⟩ (or |10,01⟩ and |

Figure 4. Calculated absorption and fluorescence spectra of PBI
dimer at 298 K from FT-TD-DMRG. The SVD cutoff is 10−3, total
simulation time τ = 20 a.u., and total number of time-steps N = 5000.
The maximal virtual bond dimension is 120. No broadening is
applied. The experimental spectrum from ref 89 is also plotted.

Figure 5. Relative error of the absorption and emission spectra at
both zero and finite temperature from four different methods, TD-
DMRG (red), 1-(blue), 2-(orange), 3-(green) particle approximation
methods. The excitonic/exciton−phonon coupling ratio is 0.1, 0.5,
1.0, 5.0, and 10.0.
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00,11⟩) are opposite in sign, so they contribute to decreasing
the 0−1 strength from that when only the |11,00⟩, |00,11⟩
states are in the Hilbert space, as in the 1-particle
approximation. This explains why the 2-particle approximation
improves the 0−1 emission dramatically. We thus recommend
that the 2-particle approximation is the lowest level n-particle
approximation to use when calculating the fluorescence
spectrum of H-type aggregates.
3.3. TD-DMRG: Sources of Error. To better understand

the errors in the TD-DMRG propagation, we can separate the
two sources of error that arise, namely, from the DMRG
compression and from the RK evolution. To study the DMRG
error by itself (at zero temperature), at each time step t → t +
τ, we expand the wave function ΨDMRG(t) in the DMRG
representation into a full configuration interaction (FCI)
representation ΨFCI(t), which is then propagated by an exact
propagator (calculated by ED) to ΨFCI(t + τ), before being
compressed into the DMRG representation ΨDMRG(t + τ) by
SVD under a specified compression criterion. To analyze the
RK error by itself, all steps are performed within the FCI
representation.
In Figure 7a, we plot the error of the TD-DMRG wave

function (Ψ(t) = e−iĤtμ̂Ψg(0)) due to the DMRG compression
alone for different SVD cutoffs or bond dimensions M, for the
same model J-type aggregates with J/gω0 = 1.0 (the
challenging intermediate coupling regime). The time step τ
and the total number of propagation steps N are the same as in
the previous section. For fixed SVD cutoff, the wave function
error initially grows smoothly, with a polynomial growth as a
function of propagation time. Interestingly, for fixed bond
dimension, the error versus time shows a “three-stage”
structure. The error is initially quite small and then grows
very quickly, finally reaching a regime where it increases
smoothly with time similarly to the case of fixed SVD cutoff. In
Figure 7b, the bond dimension versus time is also plotted.
When the SVD cutoff is fixed, the maximal bond dimension
grows up to a certain value instead of growing indefinitely, and
this value increases as the SVD cutoff is tightened. Thus,
comparing panels a and b of Figure 7, the “three-stage”
structure of the error for fixed bond dimension M arises
because (i) in the first stage, M is larger than the required Mreq
for exact evolution, giving a very small total error (controlled
by the round-off error); (ii) in the second “rapid growth” stage,

theMreq for maintaining a given accuracy increases very quickly
past the fixed M, and thus, the error increases rapidly; (iii)
finally in the third stage, the growth rate of Mreq for a certain
accuracy slows down, and thus, the error grows smoothly
again.
The formal relation between the global error due to the RK4

integration and time (total time t and time step τ) is well-
known and is O(tτ4). In our problem, the error due to RK4
integration is shown in Figure S2, which is consistent with the
above relation.
Comparing the RK4 integration error and the DMRG

compression error within the time window calculated, the error
due to RK4 is smaller than that due to DMRG compression,
for the SVD cutoffs of 10−3 and 10−4 (see Figure 7a, black
dashed line). In practice, an SVD cutoff of 10−3 or 10−4 is
usually a good balance between accuracy and efficiency, and
thus, we expect that the DMRG compression error will
typically be the main source of error rather than the RK4 error.
However, note that even though the DMRG truncation for
bond dimension M = 20 or SVD cutoff = 10−3 leads to a
seemingly large wave function error of approximately 10%, the
obtained spectrum is still very accurate (see Figure 8), except
for some small shifts in the high-frequency region where ω/ω0
> 2. This is quite different from the 1-particle and 2-particle
approximations, where all the 0−n transitions amplitudes are
calculated with large errors except for the 0−0 transition.

Figure 6. Zero-temperature emission of a H-type chain model for J/
gω0 = 1. The spectrum is scaled by a factor which normalizes the exact
spectrum. The 0−0 position is shifted to the origin. The results of
three methods are shown, exact(red), 1-particle(blue), 2-particle-
(black dotted) approximation.

Figure 7. (a) Error ∥ΨDMRG(t)−Ψexact(t)∥ and (b) the maximal bond
dimension M of the DMRG wave function as a function of time under
different compression criteria (fixed SVD cutoffs: 10−3, 10−4, 10−5,
10−6, 10−7 and fixed bond dimensions: 20, 40 and 60). The error due
to the RK4 integration is also plotted (black dashed line).
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3.4. Distyrylbenzene H-Type Aggregates. We conclude
our study by considering a TD-DMRG calculation in a realistic
H-type aggregate consisting of distyrylbenzenes (DSB).91 In
the DSB crystal, the DSB molecules pack into an intralayer
side-by-side herringbone structure shown in Figure 10b. The
excitonic coupling between layers can be neglected. Along the
direction perpendicular to the layer, the transition dipole
moments of the intralayer molecules all align in parallel and
form an H-type structure. In addition, there is a small
component of the transition dipole moment forming a J-type
structure parallel to the layer, resulting in an anisotropic effect
of the aggregation on the spectra. We only consider the
dominant H-type structure here. We choose a cluster with 18
molecules as our system (see Figure 10b). The parameters of
the excitonic coupling and exciton−phonon coupling are
adopted from ref 90 (see SI section 4). The linear spectrum of
the system has been investigated at a qualitative level using n-
particle approximation methods within the Holstein exciton
model, and the general features of the spectra have been
obtained; however, the fine structure has not been reproduced
because only a few (<5) effective modes have been
considered.15,25,92,93 For our TD-DMRG calculations, we
chose 14 normal modes for each molecule with a Huang−
Rhys factor greater than 0.02. To our knowledge, this is the
largest DSB molecular aggregate so far studied for which the
fluorescence spectrum is calculated nonperturbatively. The
corresponding Hilbert space size for the TD-DMRG (as well as
various n-particle approximations) is listed in Table 1.
With the techniques described in Section 2.3, the error of

TD-DMRG for the zero-temperature emission spectrum only
comes from the DMRG calculation of the lowest state in the
one-exciton space. The energy error of this single state is
plotted as a function of the bond dimension M in Figure 9 (the

energy calculated with M = 500 is here regarded as exact). The
single-state DMRG calculation in the Holstein model is very
accurate, even though the interaction topology in our problem
is not one-dimensional. Unlike in purely electronic systems,
where M∼ several thousands is often necessary to obtain a
converged ground state, in this electron−phonon system, M =
20 is already enough to obtain a very accurate result with an
error of less than 10−4 eV, even though the number of sites is
very large (270).
We show the calculated zero-temperature fluorescence

spectrum in Figure 10c, and the experimental spectrum at
1.4K is also plotted for comparison.94 The spectra calculated
with M = 100 and M = 20 are indistinguishable. Thus, not only
a single point state but also the spectrum can be accurately
obtained with a small M. The TD-DMRG spectrum has three
dominant fluorescence bands, 0−1, 0−2, 0−3; the 0−0 band is
largely suppressed due to the H-type excitonic coupling. To
clearly show the fine structure, the strengths of the 0−2, 0−3
band peaks are multiplied by 2. Compared to the experimental
spectrum, most of the fine structure is well reproduced.
Nevertheless, the frequency of the vibration which couples
most strongly to the exciton in the quantum chemistry
derivation of the model is slightly overestimated (1658.65
cm−1 from the calculation, ∼1435 cm−1 from experiment), and
the Huang−Rhys factor is underestimated, probably due to the
density functional approximation. We also see this discrepancy
in the former work, where the spectrum of the DSB dimer is
directly treated within the density functional approximation.95

In the 1-particle approximation calculation, the positions of the
main peaks are correct. However, due to the deficiencies we
identified in the preceding section, the 0−1 band intensity is
severely overestimated, so that the ratio of the 0−2/0−3 band
intensities to the 0−1 band intensity is underestimated.
Though the 2-particle approximation corrects this problem,
the number of vibrational modes which can be included in
such calculations is too small to capture the fine structure seen
in the TD-DMRG spectrum and in experiment. This
demonstrates the superiority of the TD-DMRG methods in
systems with large Hilbert spaces which arise when many
vibrations need to be considered.

4. CONCLUSIONS
In this work, we implemented the zero-temperature and finite-
temperature time-dependent DMRG algorithms (TD-DMRG)
for the Holstein Hamiltonian, to calculate the linear absorption

Figure 8. Absorption spectrum at zero temperature calculated by TD-
DMRG (SVD cutoff = 10−3), TD-DMRG (M = 20), 1-particle
approximation and 2-particle approximation. The exact result is also
plotted for comparison. (To show the fine structure, the absorption
strength is multiplied by 3 when ω/ω0 > 0.5.)

Table 1. System Sizes for TD-DMRG and 1-, 2-Particle
Approximation Methods

N molecules N modes N phonons
dimension of Hilbert

space

TD-
DMRG

18 14 10 18 × 10252

1-particle 18 5 4 18 432
2-particle 18 2 4 73 728

Figure 9. Energy error of the lowest state in the one-exciton space as a
function of bond dimension M. (The M = 500 energy is taken as the
reference.)
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and fluorescence spectra of molecular aggregates at both zero
and finite temperature. Our calculations on PBI molecular
chains showed that the practical accuracy of TD-DMRG
reaches that of ML-MCTDH at zero temperature and further
allows us to extract accurate finite-temperature dynamic
properties. The comparison with n-particle approximation
methods on both models and the DSB crystal further shows
that TD-DMRG is not only much more accurate than these
approximations but can also practically handle the larger
Hilbert spaces arising from increasing the number of
vibrational modes to model detailed spectral features. In
summary, our results support the use of TD-DMRG algorithms
as accurate, efficient, and robust methods for dynamical
problems including both electrons (excitons) and nuclei
(phonons). In future work, we will carry out further studies
using these TD-DMRG algorithms, including studies of true
nonequilibrium phenomena, including charge and energy
transport.

■ APPENDIX: MPO FOR THE HOLSTEIN
HAMILTONIAN

Multiplying out the matrices in the MPO representation of the
Hamiltonian can be thought of as defining a recurrence
relation to construct the Hamiltonian with all terms up to site
k, from the Hamiltonian and operators up to site k−1, and the
operators acting on site k.

Ω Ω= ·− MPOk k k1 (21)

Ω = [ ]H O 1k k k (22)

Here, Ωk is the MPO obtained by multiplying the local
MPO matrices from site 1 to k. Hk represents the part of the
Hamiltonian that acts on sites 1 to k, while Ok represents the
row of operators that define an interaction between sites 1 to k
and the remaining sites. The general structure of the local
MPO matrix of site k is

=
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ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
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Ak is a column of operators, Bk is a single operator, Ck is a
matrix of operators, and Dk is a row of operators. The
recurrence relation for each component of Ωk is

= · + · + ·
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Given the order of sites in the MPS is e1, ν11, ..., ν1n, ..., ei, νi1,
..., νin,···, one of the optimal MPO representation of the
Hamiltonian in eq 1 is

(i) For an electronic site before the middle site.
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(ii) An electronic site in the middle of the MPS. Ak and Bk

are the same as for case (i)
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Figure 10. (a) Chemical structure of the DSB molecule. (b) The
packing structure of the selected DSB aggregates with 18 molecules.
(c) The zero-temperature fluorescence spectrum of DSB aggregates
from TD-DMRG (red: M = 100, dashed blue: M = 20), and the 1-, 2-
particle approximations. τ = 20 a.u, N = 30 000, no broadening is
applied. The peaks below 2.7 eV are multiplied by 2 to show the fine
structure. The experimental results at 1.4K from ref 94 are also
plotted (black line).
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= [ ]† †a a J a J aD ...k k k k n k k n k, , (30)

Multiplying out the matrices up to the middle yields a row of
operators including complementary operators.

Ω = [ ]† †
+

†
+H a a Com Com ... Com Com 1k k k k n n k k1 1

(31)

The corresponding complementary operators constructed
are

∑=†
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(iii) Electronic site after the middle. Bk, Dk are the same as
for case (ii)
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(iv) Vibrational site.
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When excitonic coupling terms are 1-dimensional nearest-
neighbor, the maximal bond dimension D of MPO constructed
above is ∼ const, otherwise D ∼ ke.
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