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ABSTRACT: Reliable trajectory-based nonadiabatic quantum dynamics methods at the
atomic/molecular level are critical for the practical understanding and rational design of many
important processes in real large/complex systems, where the quantum dynamical behavior of
electrons and that of nuclei are coupled. The paper reports latest progress of nonadiabatic field
(NaF), a conceptually novel approach for nonadiabatic quantum dynamics with independent
trajectories. Substantially different from the mainstreams of Ehrenfest-like dynamics and
surface hopping methods, the nuclear force in NaF involves the nonadiabatic force arising
from the nonadiabatic coupling between different electronic states, in addition to the adiabatic
force contributed by a single adiabatic electronic state. NaF is capable of faithfully describing
the interplay between electronic and nuclear motion in a broad regime, which covers where
the relevant electronic states keep coupled in a wide range or all the time and where the
bifurcation characteristic of nuclear motion is essential. NaF is derived from the exact
generalized phase space formulation with coordinate-momentum variables, where constraint phase space (CPS) is employed for
discrete electronic-state degrees of freedom (DOFs) and infinite Wigner phase space is used for continuous nuclear DOFs. We
propose efficient integrators for the equations of motion of NaF in both adiabatic and diabatic representations. Since the formalism
in the CPS formulation is not unique, NaF can in principle be implemented with various phase space representations of the time
correlation function (TCF) for the time-dependent property. They are applied to a suite of representative gas-phase and condensed-
phase benchmark models where numerically exact results are available for comparison. It is shown that NaF is relatively insensitive to
the phase space representation of the electronic TCF and will be a potential tool for practical and reliable simulations of the
quantum mechanical behavior of both electronic and nuclear dynamics of nonadiabatic transition processes in real systems.

1. INTRODUCTION
A great deal of theoretical effort has been focused on
developing trajectory-based approaches for including quantum
mechanical effects in molecular dynamics simulations. These
trajectory-based approaches consistently recover classical
mechanical regions in chemical and biological processes,
where nuclear quantum effects are negligible and classical
molecular dynamics on a single-adiabatic-electronic-state
potential energy surface (PES) is capable of describing the
main features1 when the Born−Oppenheimer (BO) approx-
imation2 is valid. Such classical mechanical regions are often
too difficult to approach numerically by wave function
methods, because a lot of destructive interference in the
wave function interpretation (or in the quantum basis set
expansion) is necessary to yield classical dynamics. Reasonable
trajectory-based dynamics approaches are competent in
practically illustrating the transition from the classical
mechanical region to the region where nuclear quantum
effects become non-negligible and then important. The phase
space formulation with coordinate-momentum variables offers

not only an exact representation of classical mechanics,3,4 but
also a rigorous interpretation of quantum mechanics.5−12 It
naturally bridges quantum and classical concepts, which offers
insight into developing practical trajectory-based quantum
dynamics approaches11−18 for real molecular systems in the
age of postmodern quantum mechanics.19

When the BO approximation holds, the conventional infinite
coordinate-momentum phase space6,9,10,15 for nuclear degrees
of freedom (DOFs) is often used in the linearized semiclassical
initial value representation (LSC-IVR)/classical Wign-
er,14,20−27 forward−backward semiclassical dynamics,28−35

path integral Liouville dynamics,36−39 equilibrium continuity
dynamics,17,40 and other practical phase space quantum
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dynamics approaches.18,41−48 Some of these methods have
been successfully applied to study electronically adiabatic
processes where nuclear quantum effects are impor-
tant,20,21,23,24,42,49−65 such as transport properties,21,50,52,55

dynamic structure factors ,51 , 65 v ibrat ional spec-
tra,38−40,53,54,64,66 chemical reaction rates,20,21,23,24,44 vibra-
tional relaxation rates,56−61 and so forth. It is important to note
that the LSC-IVR/classical Wigner and some other approx-
imate trajectory-based phase space approaches can in principle
systematically be improved with more numerical effort by
more advanced SC-IVRs of Miller and co-workers,67−70 the
SC-IVR series of Pollak and co-workers,71−73 or by higher
order corrections of the exact series expansion of the phase
space propagator of Shao and Pollak74 and those of ref 40 by
us.

The BO approximation, however, fails in many important
fundamental processes in electron/hole/charge transfer, photo-
activated, energy conversion, strong electromagnetic field/
vacuum field manipulated processes in physical, chemical,
biological, materials, geological, astronomic, quantum compu-
tation and quantum information systems,75−86 which involve
the quantum mechanical behavior of both electrons and nuclei
in the context of nonadiabatic transition dynamics.11,12,87−107

Comprehensive topics on the nonadiabatic transition are
presented in the seminal reviews by Domcke, Yarkony, Koppel,
Cederbaum, and co-workers.87−93 In nonadiabatic transition
processes, electrons are often depicted by F coupled discrete
electronic states, while nuclei are described in continuous
coordinate space. The state−state nonadiabatic coupling can
be either inherent in molecular systems or induced by the
external field. The composite/nonadiabatic system then
includes both discrete electronic-state DOFs and continuous
nuclear DOFs. Since the pioneering work of Makri and co-
workers for providing benchmark results for the spin-boson
model (a condensed-phase two-state nonadiabatic model) by
quasi-adiabatic propagator path integral (QuAPI),108−111 a few
numerically exact methods, including more advanced real time
path integral methods,112−121 hierarchy equations of motion
(HEOM),122−127 dissipaton equation of motion,128−133 (multi-
layer) multiconfiguration time-dependent Hartree [(ML-
)MCTDH],134−150 time-dependent density matrix renormali-
zation group (TD-DMRG),151−160 and other tensor network
methods,161−166 have been developed for benchmark model
systems for nonadiabatic dynamics.

When real (large) molecular systems are studied, most
practical nonadiabatic dynamics methods with independent
trajectories fall into two mainstreams. The first mainstream
employs mean-field trajectories. The pioneering work of the
Meyer-Miller (MM) mapping Hamiltonian model originally
proposed from the “classical electron-analog” by Meyer and
Miller in 1979167 treats both electronic and nuclear DOFs on
the same footing. In 1997 Stock and Thoss used the Schwinger
oscillator theory of angular momentum to show the mapping
Hamiltonian is exact in quantum mechanics.168 Although the
MM mapping Hamiltonian model approach104,168−228,231 also
employs mean field trajectories, in many regards it consistently
outperforms traditional Ehrenfest dynamics229,230,232,233 in
spirit of the Ehrenfest theorem.234 Nuclear DOFs of the
mean field trajectory evolve on an averaged PES, of which the
nuclear force can be decomposed into two components in the
adiabatic representation, one is the nonadiabatic nuclear force,
and the other is the mean of the adiabatic (BO) forces
contributed by all electronic states. Ehrenfest dynamics fails to

capture the bifurcation characteristic of nuclear motion in the
asymptotic region where the nonadiabatic coupling disappears
(e. g., for the gas-phase photodissociation event). When the
MM Hamiltonian is used in the forward−backward or fully
SC-IVR framework,29,67,69 the interference between different
mean field trajectories naturally leads to the nuclear bifurcation
characteristic in the asymptotic region as shown in refs 186 and
187. When the infinite Wigner phase space is applied to both
electronic and nuclear DOFs of the MM Hamiltonian and
implemented in the full LSC-IVR framework for electronically
nonadiabatic processes,183 the performance is much less
satisfying even for electronic dynamics.185−187 This is mainly
because only a physical subspace of the harmonic oscillator is
involved in the Schwinger mapping scheme, where the bosonic
commutation relation does not necessarily hold, as pointed out
i n A p p e n d i x A o f r e f 2 3 5 . A f e w m e t h -
ods190,191,193,195,197,200−203,207,209 have been proposed on the
(practical) quasi-classical level to improve the numerical
performance over the full LSC-IVR for the MM mapping
Hamiltonian model, of which the most prevailing one is the
symmetrical quasi-classical (SQC) approach with triangle
window functions (TWFs) developed by Cotton and Mill-
er195,200 and widely used in refs 209, 210, and 236−251. This
mainstream of trajectory-based methods is often competent in
describing dynamics in the nonadiabatic coupling region, but
difficult to produce the bifurcation characteristic of nuclear
motion in the asymptotic region unless more numerically
demanding strategies are applied. Another mainstream
employs various hopping mechanisms for connecting two
independent BO trajectories generated on two different
adiabatic PESs in the nonadiabatic coupling region.252−255

The most popular approach is the fewest-switches surface
hopping (SH) originally developed by Tully in 1990.253 It has
been successfully implemented for studying both gas phase
models and realistic molecular systems.99,256−269 Quite a few
other SH algorithms,270−295 which introduce either stochastic
or deterministic hopping events, have been further developed.
This mainstream naturally satisfies the Born−Oppenheimer
limit and captures the bifurcation characteristic of nuclear
motion in the asymptotic limit where no nonadiabatic coupling
exists, but encounters the challenge in nonadiabatic processes
where the states keep coupled in a wide region or all the time.
In addition to the two mainstreams, there exist some other
methods employing independent trajectories.296−305 Non-
adiabatic dynamics approaches with coupled trajectories
include multiple spawning by Martinez and co-workers,306−309

exact factorization by Gross and co-workers,310−312 multi-
configuration Ehrenfest by Shalashilin and co-workers,313−316

etc.
The generalized coordinate-momentum phase space for-

mulation11,12,235,317−326 rigorously maps the composite system
onto phase space with continuous coordinate-momentum
variables, where nuclear DOFs are still depicted by the
conventional infinite coordinate-momentum phase space but F
discrete electronic-states are represented by the constraint
coordinate-momentum phase space (CPS), which is diffeomor-
phic to the complex Stiefel manifolds U(F)/U(F-r) (with 1 ≤ r
< F).325−328 After ref 235 first presented the key idea of a
complete space with coordinate-momentum variables for
constructing mapping Hamiltonian models for finite-state
quantum systems, ref 318 further established the CPS
formulation related to the quotient space U(F)/U(F − 1)
for general F-state systems by the sphere representation with
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coordinate-momentum variables in its main text and by the
simplex representation with action-angle variables in its
Appendix A. Reference 320 then presented CPS with
commutator variables that is related to the complex Stiefel
manifolds U(F)/U(F − r). Interestingly, the quotient space
U(F)/U(F − 2) is related to the equations of motion (EOMs)
of the first model of ref 235 or ref 318 as well as the method
used in ref 329.

The exact EOMs of mapping coordinate-momentum
variables of CPS for the pure F-state quantum system are
linear.11,12,235,317−326 As pointed out in Appendix 3 of ref 12,
the CPS formulation with coordinate-momentum variables is
superior to the conventional Stratonovich phase space
approaches with angle variables330−333 used for studying
composite/nonadiabatic systems,334−339 because the EOMs
of the latter are highly nonlinear and tedious, where inevitable
singularities need to be excluded in dynamics especially when F
is large. More importantly, the CPS formulation is versatile for
yielding more new phase space representations of the finite-
state quantum system.323,326 Some of these phase space
representations will be discussed in Sub-Section 2.4. The
generalized coordinate-momentum phase space formulation of
quantum mechanics exactly represents the three key
elements12 for nonadiabatic dynamics: the phase space integral
expression for the expectation or ensemble average of the
physical property of interest, the initial condition on phase
space, and the EOMs on phase space.

Even when we introduce the independent trajectory
approximation in the generalized coordinate-momentum
phase space formulation, the first two key elements are still
exactly represented, and only the third key element is
approximated. That is, the general Wigner-Moyal equation
on quantum phase space, which is a partial differential
equation, is replaced by a set of ordinary-differential equations
to produce the independent trajectory. This involves the same
strategy discussed in ref 40. When the phase space function
corresponding to the quantum Hamiltonian operator is used to
generate the EOMs for the independent trajectory, it leads to
the classical mapping model (CMM)318,319 when the quotient
space U(F)/U(F − 1) is employed, or the CMM with
commutator variables (CMMcv)320 when the quotient space
U(F)/U(F − r) with 1 ≤ r < F is used. More recently, we have
proposed nonadiabatic field (NaF),322,324 a conceptually novel
nonadiabatic dynamics approach with independent trajectories
on quantum phase space. NaF is competent in faithfully
describing both electronic and nuclear motion in the
nonadiabatic coupling region and in the asymptotic region
where the state−state coupling vanishes. The nuclear force in
NaF includes two terms, one is the nonadiabatic nuclear force
contributed by the product of the nonadiabatic coupling vector
(NACV) and the electronic coherence between different
electronic states, and the other is the adiabatic nuclear force of
a single adiabatic electronic state (either stochastically with
electronic weights or deterministically with the dominant
electronic weight). NaF is then fundamentally different from
the two prevailing conventional mainstreams with independent
trajectories, because of two key elements: the exact expressions
of the initial condition and of the time-dependent properties
on generalized quantum phase space with coordinate-
momentum variables for electronic and nuclear DOFs, and
the nuclear EOMs on quantum phase space with the
aforementioned adiabatic and nonadiabatic force. As shown
in the main text of and Section S7 of the Supporting

Information340 of ref 322, the comparison among NaF,
Ehrenfest dynamics, SH methods, and the brute-force
implementation of the EOMs of NaF to either Ehrenfest
dynamics or SH methods demonstrates the importance of the
two key elements.

Recent progress on the CPS formulation has revealed new
classes.323−326 For instance, we have proposed a novel class of
CPS for two-state systems,323 which satisfies a relation derived
from the Abel integral equation leading to the exact population
dynamics in the frozen nuclei limit. In any case of this class,
each trajectory on CPS makes non-negative contribution to the
electronic population dynamics. Interestingly, the TWF
approach of Cotton and Miller195 used for population
dynamics in the SQC/MM method is proved as a special
case of this class. More classes are proposed in ref 326. In this
paper, we apply NaF with a few new formalisms of CPS and
test their performance in a suite of typical benchmark model
systems, including linear vibronic coupling models, one-
dimensional scattering models in gas-phase, system-bath
models and atom-in-cavity models, where numerically exact
results are available for comparison.

The paper is organized as follows: Section 2 presents the
theory of NaF methods, including phase space mapping
formalisms, equations of motion, and a review of various time
correlation functions (TCFs) in the CPS formulation. Section
3 demonstrates the numerical performance of NaF methods
for the suite of gas-phase and condensed-phase model systems.
Conclusion remarks are presented in Section 4.

2. THEORY
2.1. Background. In atomic units, the full Hamiltonian for

Natom nuclei and Nele electrons reads
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(1)

Here, {RJ, PJ} are the coordinates and momenta of the J-th
nucleus, M̃J is the ratio of the mass of the J-th nucleus to the
mass of an electron, ZJ is the atomic (charge) number of the J-
th nucleus, and { }r p,j j

are the coordinates and momenta of

the j-th electron. The first term of the right-hand side (RHS)
of eq 1 represents the kinetic energy of the nuclei; the second
term is the kinetic energy of the electrons; the third term
stands for the Coulomb attraction potential between electrons
and nuclei; the fourth and fifth terms are the repulsion
potential between electrons and that between nuclei,
respectively. The total number of nuclear DOFs is Nnuc =
3Natom. The reduced Planck constant, ℏ, is set to 1 and then
omitted for electronic DOFs throughout the paper. In Sub-
Sections 2.1 and 2.2, to illustrate nuclear quantum effects, ℏ for
nuclear DOFs is explicitly expressed in formulas. But in other
parts of the paper, ℏ for nuclear DOFs is also set to 1 and then
omitted, because atomic units are used in all the benchmark
tests.

Define the electronic Hamiltonian Ĥel(R̂) as the sum of the
last four terms in the RHS of eq 1. The full Hamiltonian
becomes
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} is the diagonal nuclear mass matrix, {R, P} are the
coordinate and momentum vectors of nuclear DOFs, and the
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is the same as the first

term of the RHS of eq 1 for the full Hamiltonian. Here, MI is
the mass of the I-th nuclear DOF, PI is the I-th component of
the momentum vector, and RI is the I-th component of the
coordinate vector.

Assume that {|ϕk(R)⟩} is the complete set of orthonormal
adiabatic electronic states for a given nuclear configuration, R.
The representation of Ĥel(R̂) in the adiabatic basis reads

= | |H ER R R R( ) ( ) ( ) ( )
k

k k kel
(3)

where Ek(R) denotes the adiabatic potential energy surface of
the k-th adiabatic electronic state |ϕk(R)⟩. The rigorous
expression of eq 3 in general involves a complete set of infinite
adiabatic electronic states. It was in refs 12 and 341 where eq 2
with the expression of eq 3 for the electronic Hamiltonian,
Ĥel(R), was first employed for phase space mapping methods
for nonadiabatic dynamics. E.g., see eqs (55) and (57) of ref
12.

The physical nuclear kinetic energy operator in either eq 1
or eq 2 should intrinsically be expressed in the full coordinate
space of nuclear DOFs, which is independent of the electronic
space. When the complete adiabatic electronic basis set is
available, the expression of the physical nuclear kinetic energy
operator reads

i
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where P̂can is the canonical nuclear momentum operator that
does not explicitly operate on any adiabatic basis state |ϕk(R)⟩,

=d R R
R

R
( ) ( )

( )
kl k

l

(5)

is the first-order nonadiabatic coupling vector between the k-th
and l-th adiabatic electronic states, of which the J-th
component is dkl

(J)(R), and

=D
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J
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J

( )
2

2
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is the second-order derivative term with respect to the J-th
nuclear DOF in the nonadiabatic coupling between the k-th
and l-th adiabatic electronic states. It is easy to show

= *d R d R( ) ( )lk kl (7)
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Equations 4, 7, and 8 lead to an equivalent expression of the
physical nuclear kinetic energy operator

i
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or in a more compact form,
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1
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1
can ele

(adia)
(10)

where = | |1 R R( ) ( )k k kele
(adia) is the identity operator in

electronic space represented by the adiabatic electronic basis
set and = | |d R d R R R( ) ( ( )) ( ) ( )k l kl k l, is an electronic
operator, of which each element is a vector in the nuclear space
as defined by eq 5. The RHS of eq 9 or that of eq 10 was
already used in the literature, e.g., refs 198, 276, 342, and 343.
It is important to note that eqs 4, 8, 9, or 10 only hold when
the adiabatic electronic basis set is complete. That is, the
summation in eqs 4, 8, and 9 intrinsically include infinite
adiabatic electronic states. We note that eq 10 inherently hints
the relation between the physical nuclear momentum operator,
P̂, and the canonical nuclear momentum operator in the
adiabatic representation, P̂can.

Most processes in chemistry, materials, biology, and so forth
involve finite energy where only a finite number of electronic
states are effectively included. Assume that only F lowest
adiabatic electronic basis states are relevant. The truncation of
the electronic basis set in principle assumes that the third term
of the equation below,
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vanishes. When = = +D d dR R R( ) ( ) ( )kl
J

m F km
J

ml
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1
( ) ( ) is not

negligible for the system, it implies a nonabelian/Yang-Mills
gauge field − id(R)12,344 with the gauge field tensor

= + [ ]
R R
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( i ) ( i )

i i , iIJ

J

I

I

J

I J
( ) ( )

( ) ( )
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(12)

When the truncation of the adiabatic electronic basis set is
reasonable, δDkl

(J)(R) or IJ is often close to zero but should be
ignored with caution.

When the full space of electrons is involved, which means
infinite adiabatic electronic states are included, the expression
of eq 3 is indeed complete for the electronic Hamiltonian.
Under such a circumstance, an orthonormal diabatic electronic
basis set, {|n⟩}, that is independent of the nuclear coordinate
vector, R, can rigorously be defined,
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| = * |n T R R( ) ( )
k

nk k
(13)

where Tnk*(R) = ⟨ϕk(R)|n⟩ or Tnk(R) = ⟨n|ϕk(R)⟩ is the
element of the diabatic-to-adiabatic transformation matrix,
T(R). Then the representation of Ĥel(R) in the diabatic basis
set becomes

= | |H V n mR R V R( ) ( ) ( )
n m

nmel
, (14)

where Vnm(R) = ⟨n|Ĥel(R)|m⟩ is the matrix element for the
electronic Hamiltonian, Ĥel(R). When the complete diabatic
electronic set is available, the physical nuclear kinetic energy
operator reads
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When only F diabatic electronic states are effectively involved,
the truncation in the diabatic basis set and eqs 2, 14, and 15
leads to the expression of the full Hamiltonian operator
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Equation 16 in principle assumes that {|n⟩}, n ∈ {1,···,F} is the
“complete” set of diabatic electronic states and {|ϕk(R)⟩}, k ∈
{1,···,F} is the “complete” set of orthonormal adiabatic
electronic states.

We will first review the EOMs of NaF (on quantum phase
space) in Sub-Section 2.2 and Sub-Section 2.3, then discuss the
phase space integral expression of the TCF for evaluating the
time-dependent property in Sub-Section 2.4.
2.2. Phase Space Mapping Hamiltonian for Non-

adiabatic Systems. The one-to-one correspondence map-
ping function of the full Hamiltonian of eq 16 in the
generalized coordinate-momentum phase space representa-
tion11,12,235,318−320 reads

i
k
jjj y

{
zzz

= [ ]

= +

× +

=

H HK K

V

x p x p

R P x p R P x p

P M P R

( , , , , ) Tr ( , ) ( , , )

1
2

( )

1
2

( i )( i )

n e

n m

F

mn

n n m m
nm

, nuc ele

T 1

, 1

( ) ( ) ( ) ( )

(17)

where
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denotes the mapping kernel of the Wigner phase space6,10,319

for nuclear DOFs, and
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(19)

denotes the mapping kernel of CPS319,320,322,326 for electronic
DOFs. Here, the notation Trn[·] and Tre[·] represent the trace
over nuclear DOFs and that over electronic DOFs,
respectively. The commutator matrix Γ can be represented
by a series of extended phase space variables (namely the
commutator variables) through its spectral decomposition.320

The mapping CPS,235,318−320,322 characterized by constraint

x p( , , ; ), is related to the normalization of eq 19 (i.e.,
Tre[K̂ele(x,p,Γ)] = 1), where γ denotes the parameter vector
involved in the mapping CPS. The covariant form of eq 17 in
the adiabatic representation reads12
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(20)

where x̃(R) + ip̃(R) = T†(R)(x + ip), Γ̃(R) = T†(R)ΓT(R)
are covariant phase space variables of electronic DOFs in the
adiabatic representation. As shown in refs 12 and 345, the
nuclear canonical momentum in the diabatic representation, P,
corresponds to the nuclear kinematic momentum in the
adiabatic representation. The relation between the nuclear
kinematic momentum in the adiabatic representation, P, and
the nuclear canonical momentum in the adiabatic representa-
tion, P̃, reads12,198
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(21)

When the electronic basis set is complete, the physical nuclear
momentum, the nuclear canonical momentum in the diabatic
representation, and the nuclear kinematic momentum in the
adiabatic representation are in principle equivalent.12,345 This
is inherently implied in eq 10 and eq 15.

Cotton, Liang and Miller directly started from the adiabatic
representation and first showed the use of the nuclear
kinematic momentum, P, in Ehrenfest-like dynamics of the
Meyer-Miller mapping model to avoid second-order non-
adiabatic coupling terms.198 The derivation of the nuclear
kinematic momentum, P, in the generalized phase space
formulation has been demonstrated in Section S1 of the
Supporting Information346 of ref 320, Section 4 of ref 12, and
Appendix 2 of its Supporting Information,345 where we have
explicitly pointed out that the first-order nonadiabatic coupling
corresponds to a nonabelian/Yang-Mills gauge field
−id(I)(R)12,344 with the gauge field tensor defined by eq 12
and that the EOM of nuclear kinematic momentum P in the
adiabatic representation does not include second-order non-
adiabatic coupling terms only when such a gauge field tensor is
zero, or equivalently, when the diabatic representation is
rigorously defined12,87 or the adiabatic basis set is complete.
NaF on quantum phase space employs nuclear kinematic
momentum P in the adiabatic representation.322,324 In
addition, as first explicitly pointed out in ref 12 and already
used in refs 11, 320, 321, and 347, nuclear kinematic
momentum P in the adiabatic representation should be
inherently utilized in SH methods. When the gauge field
tensor (defined by eq 12) is zero, in SH methods the use of
nuclear kinematic momentum P in the adiabatic representation
can also avoid second-order nonadiabatic coupling terms.

When the (electronic) adiabatic basis is incomplete, IJ in
eq 12 deviates from zero. A correction term, Fresidue, arises from
the nonabelian/Yang-Mills gauge field tensor in the force for
the update of nuclear kinematic momentum vector P in the
adiabatic representation,12,167,341,348,349 of which the I-th
component reads
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(22)

Here ρ̃ denotes the corresponding effective electronic density
matrix in the adiabatic representation, which depends on the
EOMs of the nuclear DOFs. (An example is defined in eq 34.)
Such a term was shown in eq (S30) of Appendix 2 of the
Supporting Information345 of ref 12 for the EOMs in the CPS
formulation. Only when this term vanishes, the EOM of
nuclear kinematic momentum P involves but the first-order
nonadiabatic coupling term.12 When nuclear canonical
momentum P̃ in the adiabatic representation was used instead,
a term equivalent to the RHS of eq (22) appeared in Appendix
B for the EOMs of the Meyer-Miller mapping model in ref 167
by Meyer and Miller and in eq (17) for Ehrenfest dynamics in
ref 349 by Amano and Takatsuka. The relativistic analogue of
the EOMs with the canonical momentum was proposed in ref
348 by Wong, where the nonadiabatic coupling plays the role
of the nonabelian gauge field interacting with the isotopic-spin-
carrying particle.

In all the benchmark tests presented in this paper where
numerically exact results in the diabatic representation are
available, the gauge field tensor defined by eq 12 is zero. When
on-the-fly ab initio NaF simulations are performed for real
systems where only a finite number of adiabatic electronic
states are involved, the gauge field tensor of eq 12 should be
disregarded with caution for the update of nuclear kinematic
momentum P.
2.3. Nonadiabatic Field. As derived in refs 12, 322, and

324, the EOMs of the electronic phase space variables read

+ = +
=

x p V x pRi i ( )( i )n n

m

F

nm
m m( ) ( )

1

( ) ( )

(23)

= [ ]
=

V VR R R( ) i ( ) ( )nm
k

F

nk km nk km
1 (24)

in the diabatic representation,11,12,320 and

+ = [ + ]
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n n

m

F

nm
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1
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= [ ]
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1

(eff) (eff)

(26)

in the adiabatic representation.11,12,320 Here, the elements of
the effective potential matrix in the adiabatic representation are

= ·V ER P R M P d R( , ) ( ) i ( )nm n nm nm
(eff) 1 (27)

Define g = x + ip and g̃(R) = x̃(R) + ip̃(R). Integrating eqs 23
and 24 over t with fixed R leads to the propagation of
electronic phase space variables in the diabatic representation
within a finite time-step Δt320,350

=+ tg U R g( ; )t t t (28)

=+
†t tU R U R( ; ) ( ; )t t t (29)

where the propagator in the diabatic representation reads

=t tU R V R( ; ) exp( i ( ) ) (30)

Similarly, integrating eqs 25 and 26 over t with fixed R and P
yields320

=+ tg R U R P g R( ) ( , ; ) ( )t t t (31)

=+
†t tR U R P R U R P( ) ( , ; ) ( ) ( , ; )t t t (32)

with the propagator in the adiabatic representation

=t tU R P V R P( , ; ) exp( i ( , ) )(eff) (33)

For a given effective electronic density matrix

= + [ ]
+

+

R x R p R R

x x p p
x p x p

( ) ( ( ), ( ), ( ))

1 Tr
( )

( i )( i )e
T T

T

(34)

in the adiabatic representation, the EOMs of NaF for nuclear
DOFs read322,324

=
= +

R M P

P F F

1

adia. nonadia. (35)

where

= EF R( )jRadia. occ (36)

denotes the adiabatic force provided by the adiabatic electronic
state, |ϕj docc

(R)⟩, and

= E EF R R d R R( ( ) ( )) ( ) ( )
n m

F

n m mn nmnonadia.
(37)

represents the nonadiabatic force. Here, ρ̃nm(R) denotes the
matrix element of ρ̃(x̃(R), p̃(R), Γ̃(R)). Equation 37 has an
equivalent form to the nonadiabatic force in Ehrenfest-like
dynamics of CMMcv.11,320 When the time-reversal symmetry
holds, Fresidue of eq 22 is a correction term to the nonadiabatic
nuclear force in eq 37. This correction term involves the
derivative with respective to nuclear coordinate R of
nonadiabatic coupling vector d(R), which is often costly to
obtain. Nevertheless, the contribution from eq 22 to the
nonadiabatic nuclear force is typically small in most cases and
should be neglected with caution. When the nonadiabatic
nuclear force of eq 37 is neglected, the EOMs in eq 35 lead to
the BO trajectory employed in SH methods (where nuclear
kinematic momentum P should be used). Since eq 37
intrinsically provides feedback of electronic coherence to
nuclear motion, it should never be disregarded in the state−
state (nonadiabatic) coupling regions where the term, (En(R)
− Em(R))dmn(R) = ⟨ϕm(R)|∇RĤel(R)|ϕn(R)⟩ (n ≠ m), plays a
role. The adiabatic nuclear force in eq 36 can be determined
either by the weight stochastically or by the dominant
component deterministically.322,324 In the latter case, eq 36
reads

=
=

E hF R x R p R R

x R p R R

( ) ( ( ( ), ( ), ( ))

( ( ), ( ), ( )))

k

F

k
j k

F

kk

jj
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1

(38)

with h(x) denotes the Heaviside step function. The relation
between the EOMs of NaF and the exact EOMs in the
generalized coordinate-momentum phase space formulation of
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quantum mechanics is discussed in Section S9 of the
Supporting Information.

In NaF the mapping energy on quantum phase space

= +H ER P P M P R( , , )
1
2

( )jNaF
T 1

occ (39)

in the adiabatic representation for each trajectory should be
conserved. Here, Ej docc

(R) is the adiabatic PES of the single
electronic state which contributes to the nuclear adiabatic
force. As discussed in ref 12 and already implemented in refs
11, 12, 320, 321, and 347, the RHS of eq 39 is the same
mapping energy (with nuclear kinematic momentum P) on
quantum phase space that the SH trajectory should conserve,
even when nuclear DOFs are treated quantum mechanically
and the nuclear initial condition is sampled on Wigner phase
space. Since the nuclear kinematic momentum rather than the
nuclear canonical momentum is involved in the mapping
energy, in NaF the corresponding mapping energy (eq 39)
should not be used to generate the EOMs for (R, P; x̃, p̃, Γ̃)
on quantum phase space. In our previous works,322,324 we
employed a momentum rescaling approach to ensure that the
trajectory generated by eqs 35−37 conserves the correspond-
ing mapping energy (eq 39) for NaF. That is, the mapping
energy of eq 39 on quantum phase space is conserved by
rescaling P along its direction after each time-step. In Section
S1 of the Supporting Information, we demonstrate that this
approach corresponds to the ef fective nonadiabatic force
perpendicular to nuclear velocity M−1P in the infinitesimal
time-step limit. Similar treatments have been discussed in
Section S2 of the Supporting Information351 of ref 324. When
the state with the dominant weight is switched, the nuclear
kinematic momentum is also rescaled along its direction to
achieve energy conservation if possible. In cases of frustrated
switching, the occupied state, jocc, is not changed, even though
this state no longer holds the dominant weight. The
corresponding complete integrator is described in refs 322
and 324. Below we introduce a more efficient integrator for
NaF.

Here we propose two important elements for efficiently
integrating the EOMs of NaF within a finite time-step Δt. The
first element is the numerical integrator for the effective
nonadiabatic force as derived in Section S1 of the Supporting
Information, and the second one is the more efficient
numerical integrator scheme “P-e-R-e-P”. Combining these
two elements, the complete integrator for the EOMs of NaF
for a finite time-step Δt then reads:

1. Update the nuclear kinematic momentum within a half
time-step Δt/2 using the adiabatic force

+ E
t

P P R( )
2t t t j tR/2 old (40)

2. Update the nuclear kinematic momentum within a half
time-step Δt/2 using the numerical integrator for the
effective nonadiabatic force for the Nnuc ≥ 2 case,
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Here, Ekin = PTM−1P/2 is the total kinetic energy, e∥(R,
ρ̃) denotes the unit vector for the direction of vector

=

= | |

E E
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B represents the scalar length of vector B, Π∥ = α∥e∥ =
(M−1/2P·e∥)e∥ and Π⊥(R, P, ρ̃) = M−1/2P − α∥e∥ are the
components of Π ≡ M−1/2P parallel and perpendicular
to B, respectively. The integrator eq 41 conserves the
total kinetic energy Ekin = PTM−1P/2. For the Nnuc = 1
case, this step is skipped. When B t

E t

/ 2

2 ( )
t

kin

is very small or

very large, please refer to arguments below and Section
S1 of the Supporting Information of this paper for
details of additional treatments.

3. Update phase space variables of electronic DOFs within
a half time-step Δt/2 according to

+ + tg U R P g( , ; /2)t t t t t t/2 /2 (44)
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4. Update the nuclear coordinate within a full time-step Δt

++ + tR R M Pt t t t t
1

/2 (46)

5. Update phase space variables of electronic DOFs within
the other half time-step Δt/2 according to

+ + + +tg U R P g( , ; /2)t t t t t t t t/2 /2 (47)
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Calculate the effective electronic density matrix ρ̃
according to eq 34.

6. Determine a new occupied state jnew based on ρ̃ and
rescale P if jnew ≠ jold,

+ +
+ + + +

+ +

H E
P P

R P R( , , ) ( )
t t t t

t t t t t t j t t

P M P/2 /2
NaF /2

2
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(49)
If HNaF(Rt+Δt, Pt+Δt/2, ρ̃t+Δt) < Ej dnew

(Rt+Δt), the switching

of the adiabatic nuclear force component is frustrated. In
such a case we keep jnew = jold and the rescaling step (for
the nuclear kinematic momentum) eq 49 is skipped.
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7. Similar to Step 2, update the nuclear kinematic
momentum within the other half time-step Δt/2 using
the numerical integrator for the effective nonadiabatic
force for the Nnuc ≥ 2 case
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When
+

+B t

E t t

/ 2

2 ( / 2)
t t

kin

is very small or very large, please

refer to arguments below and Section S1 of the
Supporting Information for additional details.

8. Update the nuclear kinematic momentum within the
other half time-step Δt/2 using the adiabatic force

+ + +E
t

P P R( )
2t t t t j t tR new (51)

In Steps 2 and 7 of the integrator above for the Nnuc ≥ 2
case, two additional cases should be taken care of for achieving
numerical stability. When B t E/( 2 )kin in eqs 42 and 43 is
very small (e.g., B t E/(2 2 ) 10kin

20) in the region where
the nonadiabatic coupling almost vanishes, we use the
following integrator to replace the one in Steps 2 and 7 (for
a half time-step, Δτ = Δt/2):
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Conversely, B t E/(2 2 )kin is very large in the region where
the NaF trajectory approaches the “classical” forbidden region
(Ekin → 0). In this region, if M−1/2P and B are nearly parallel
with each other in the same direction ( E/ 2 1kin ), a self-
adaptive time-step strategy should be employed to avoid
numerical instability in the integrator eq 41. (Please see
Section S1 of the Supporting Information for more details.)
This complete integrator for a finite time-step Δt for NaF is
applicable to general systems, regardless of whether the
diabatic representation is available or not.

As mentioned in refs 322 and 324, several models defined in
the diabatic representation (such as the FMO model and the
singlet-fission model tested in the two references) require a
considerably shorter time-step for numerical convergence
when employing the propagator in eq 33 to propagate the
electronic phase space variables in the adiabatic representation.
When the diabatic representation is rigorously defined, we
present two approaches to enhance the efficiency of NaF by
taking advantage of that the diabatic basis set is available. The
first approach is to use the covariant electronic propagator in
the adiabatic representation according to its counterpart in the
diabatic representation (eqs 28 and 29), rather than using eqs
31 and 32 for propagating electronic DOFs. This approach is
equivalent to evolving electronic DOFs in the diabatic
representation while nuclear DOFs are propagated in the
adiabatic representation. (See more details in Section S2 of the
Supporting Information.) The second approach is to express
the nuclear force of the second equation of eq 35 of NaF (the
sum of the adiabatic force and the nonadiabatic force) in the
diabatic representation and to evolve both nuclear and
electronic DOFs in the diabatic representation, as described
in Section S3 of the Supporting Information.

2.4. Time Correlation Functions. Consider the TCF of
electronic DOFs

= [| | | | ]D t n m e k l e( ) Trnm kl e
Ht Ht

,
i i

(53)

where the (n = m, k = l), (n = m, k ≠ l), (n ≠ m, k = l), and (n
≠ m, k ≠ l) cases of eq 53 stand for the (electronic)
population-population, population-coherence, coherence-pop-
ulation, and coherence-coherence TCFs, respectively. The
unified framework of ref 324 maps Dnm,kl(t) to the phase space
counterpart11,12,319,322−324
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(54)

where dμ(x, p, Γ) denotes the integral measure over the
mapping CPS, w(γ) represents the normalized weight (i.e.,
quasi-probability distribution) function (of γ) as first proposed
in ref 12 and C̅nm,kl(t) denotes an element of the time-
dependent normalization factor tensor.323,324 The integrand
function of electronic phase space variables in eq 54 can be
determined in various ways. One typical choice for developing
trajectory-based dynamics methods is12,319,322,324
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(55)

where K̂ele
−1(x, p, Γ) denotes the inverse mapping kernel of CPS,

and {xt, pt, Γt} represents the phase variables of the trajectory
at time t with the initial condition {x0, p0, Γ0}. The simplest yet
useful case where Γ = γ1 in the electronic mapping kernel and
its inverse is often utilized.11,12,318−320,322 The constraint of the
corresponding CPS reads
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with γ ∈ (−1/F, + ∞),318,319 yielding the U(F)/U(F-1)
complex Stiefel manifold.12 Our previous works have presented
several different forms of the electronic mapping kernel and
pointed out that even for the same electronic mapping kernel,
inverse mapping kernels, are not unique.12,324−326

Below we list several types of TCFs in the CPS
representation, and construct the corresponding NaF methods.

Covariant-Covariant. The mapping kernel and the inverse
mapping kernel are given by319
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(57)

In this case, the normalization factor is C̅nm,kl(t) ≡ 1, with the
invariant integral measure dμ(x, p) = Fdxdp. The weight
function is often set to a Dirac delta function w(γ) = δ(γ − γ0)
with an adjustable parameter γ0 ∈ (−1/F, + ∞),319 although
other reasonable choices for w(γ) are possible.12 We denote
eqs 54 and 55 combined with eqs 56 and 57 as the covariant-
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covariant (cc) TCF. The term “covariant” implies that the
mapping kernel and the inverse mapping kernel satisfy

= + +

= + +

†

†

UK x p U K U x p U x p

UK x p U K U x p U x p

( , ) (Re ( i ), Im ( i )),

( , ) (Re ( i ), Im ( i ))

ele ele

ele
1

ele
1

(58)

for arbitrary F × F unitary matrix U. The cc TCF is always able
to produce the exact population and coherence dynamics in
the frozen nuclei limit for F ≥ 2. The initial sampling of the
variables {x, p} for electronic DOFs is according to the
uniform distribution on one (2F − 1)-dimensional sphere

x p( , ; ).
The cc TCF was employed by CMM in 2019 and by

CMMcv in 2021 in refs 11 and 318−320. In spirit of the
unified framework of mapping models with coordinate-
momentum variables of ref 235 reported in 2016, the CMM
methods on CPS were first proposed and derived in ref 318 in
2019 for nonadiabatic systems with general F states (F ≥ 2).
The CPS with coordinate-momentum variables with the
general value of γ was first indicated by eqs (1), (5), (7),
(19) and (28) of ref 318 and the CPS with action-angle
variables for the γ = 0 case was first presented by eqs (A4)-
(A5) of Appendix A of ref 318. The strategy of using action-
angle variables to establish or prove the CPS representations
was first employed in Appendix A of ref 318, then in refs 323
and 324, while the same strategy of using coordinate-
momentum variables instead was presented in refs 12 and
319. Section S4 of the Supporting Information of this paper
revisits the strategy of using action-angle variables of CPS of
Appendix A of ref 318 only for education purposes. In ref 318,
the constraint of eq 28 and the Hamiltonian model of either eq
7 or eq 19 inherently indicate the complex Stiefel manifolds
U(F)/U(F-r) (with 1 ≤ r < F).325−328 More specifically, in ref
318, the constraint of eq 28 and the Hamiltonian model of eq
7 with {γnm = γδnm; ∀n, m} intrinsically imply the U(F)/U(F-1)
complex Stiefel manifold, and the constraint of eq 28 and the
Hamiltonian model of eq 19 with {γ̃nm = γδnm; ∀n, m} in
principle leads to the U(F)/U(F-2) complex Stiefel manifold.

Following refs 235, 318, and 352, ref 319 explicitly showed
that the phase space parameter, γ, should lie in a continuous
range (−1/F, + ∞), and refs 11, 12, and 320 first pointed out
that the P, W and Q versions of Stratonovich phase space
correspond to only three special cases of the U(F)/U(F − 1)
constraint phase space used in CMM with γ = 1,

+F F( 1 1)/ and 0. These three conventional versions
of Stratonovich phase space330,331,333,338,353 were used for
studying nonadiabatic dynamics of composite systems for the F
= 2 case in refs 337 and 338, and later for the F = 2 case in ref
354, then for the multistate case (F ≥ 3) in ref 204 in 2020.
Their relations to the CMM/CPS approach first originally
developed in refs 235 and 318 for general F-state systems, were
presented in ref 320 in 2021, and in ref 11 Appendix 3 of ref
12, ref 355, and ref 356. For example, a special case for phase
sp a c e pa r ame t e r γ i n CMM23 5 , 3 1 8− 3 2 0 whe r e

= +F F( 1 1)/ of the U(F)/U(F − 1) constraint
phase space is used, is related to the W version of the spin
mapping method in ref 204 for general F ≥ 3 cases, where the
conventional W version of the SU(F)/U(F − 1) Stratonovich
phase space331,333,353 is implemented. More details are
presented in Appendix 3 of ref 12 on the relation as well as
subtle difference between the U(F)/U(F − 1) constraint

coordinate-momentum phase space with 2F variables and the
SU(F)/U(F − 1) Stratonovich phase space331,333,353 with 2F −
2 variables. The U(F)/U(F − 1) constraint coordinate-
momentum phase space inherently includes a time-dependent
global phase variable and naturally leads to the linear EOMs of
quantum mechanics in the frozen nuclei limit. More recently,
the twin-space representation with CMM/CPS has been
proposed in ref 357.

Similar to CMMcv,320 when NaF is combined with the “cc”
TCF (leading to the NaF-cc method322), it is essential to
involve the commutator matrix in calculating nuclear force for
satisfying the Born−Oppenheimer limit, where the initial
condition reads320
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n m
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2
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nm

n n

nj
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(59)

Here j0 denotes the label of the initially occupied state. We
have shown that [ + ]F F( 1 1)/ , 1/20 is recommen-
ded for NaF-cc,322 and we employ γ0 = 1/2 for NaF-cc
throughout this paper. (That is, the weight function is w(γ) =
δ(γ − 1/2).)

As demonstrated in refs 325 and 326, the mapping kernel as
well as its inverse are not unique, while eqs 56 and 57 denote
only a special choice (the covariant form). Several other kinds
of mapping formalisms are discussed below as well as listed in
ref 326.

Triangle Window Functions. We follow the formalism in
refs 323 and 324 for describing the TCF with TWFs. The
mapping kernel is given by

= | | + +

× | |
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with the TWF for the n-th state195,200,324
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where e(n) = [(x(n))2 + (p(n))2]/2. For the population-
population and population-coherence TCFs (i.e., eq 55 with
n = m), the corresponding inverse mapping kernel reads
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(62)

For the coherence-population and coherence-coherence TCFs
(i.e., eq 55 with n ≠ m), the inverse mapping kernel is set to be

Ä
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(63)

(Note that in principle eq 63 can also be used for the
population-population and population-coherence TCFs.326)
The weight function reads
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and dμ(x, p) = Fdxdp. Since γ does not appear explicitly in the
integrand, Q̅nm,kl(x0, p0, xt, pt), for CPS with TWFs, it can be
integrated over exactly, leading to324
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Finally, the time-dependent normalization factor reads
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The TCF with TWFs for population dynamics (with eqs 60
and 62 for the n = m and k = l case) was first introduced by
Cotton and Miller,195,200 of which the F = 2 case belongs to the
novel class of exact phase space representations of the pure
two-state system in ref 323 and yields exact population
dynamics in the frozen nuclei limit. Although it fails to produce
exact population dynamics for F ≥ 3 in the frozen nuclei limit,
the TWFs ensure a positive semidefinite population and
demonstrate reasonably good results for typical multistate
systems.200,324 The above formalism for TCFs involving
coherence terms (i.e., n ≠ m or k ≠ l), which was first
proposed in ref 324 by us, satisfies the frozen nuclei limit for
arbitrary number of states. Reference 195 of Cotton and Miller
provides a simple algorithm for efficient sampling or evaluation
with TWFs, which is also described in details in our previous
work.324

Two possible approaches for combining NaF with TWFs
have been proposed in ref 324. The first approach employs Γ =
1/3, following the recommended zero-point energy parameter
1/3 of Cotton and Miller,195,200 and is referred to as NaF with
TWFs (NaF-TW). The second method employs eq 59 as the
initial condition of the commutator matrix, which is denoted as
NaF with TWFs-2 (NaF-TW2). We have demonstrated that
both NaF-TW and NaF-TW2 are comparable with NaF-cc and
perform reasonably well for various benchmark gas-phase and
condensed-phase systems.324

Hill Window Functions. A novel positive semidefinite hill
window functions (HWF) is proposed in ref 326 for general F
≥ 3 cases, which can be utilized for constructing TCF
formalisms. As an example, when choosing the mapping kernel
as
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the corresponding inverse mapping kernel for population-
population and population-coherence TCFs (i.e., eq 55 with n
= m) reads
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with
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+
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( )
3

7( 1)
60
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where the diagonal terms of the inverse mapping kernel eq 68
a r e H W F s . T h e w e i g h t f u n c t i o n i s

= +w F F( ) ( ( 1 1)/ ) and the invariant integral
measure is dμ(x, p) = Fdxdp. The (time-dependent)
normalization factor reads
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Similar to the TCF with TWFs, the TCF with HWFs is
positive semidefinite for estimating electronic population. For
the F = 2 case, the population-population TCF can be related
to Appendix B of ref 294 in the frozen nuclei limit. In eq 68,
parameter

=
+ =

F
F k
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2 1 k

Foff
2

1

that appears in the population-coherence TCF can be related
to ref 295. The inverse mapping kernel for coherence-
population and coherence-coherence TCFs (i.e., eq 55 with
n ≠ m) is identical to eq 57. Similar to NaF-TW and NaF-
TW2 of ref 324, we also consider two approaches to use HWFs
with NaF, namely NaF with HWFs (NaF-HW) and NaF with
HWFs-2 (NaF-HW2). The initial condition of Γ for NaF-HW
is defined as = +F F1( 1 1) / , i.e., an invariant CPS
parameter, and that for NaF-HW2 employs eq 59.

The initial sampling procedure for variables {x, p} for
electronic DOFs with HWFs is listed below. For coherence-
population and coherence-coherence TCFs, the initial
condition of {x, p} is uniformly sampled on x p( , ; )
where = +F F( 1 1)/ . For population-population and
population-coherence TCFs Dnn, kl(t), the initial condition of
{x, p} is uniformly sampled on
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with the following sampling procedure for one phase point:
1. Uniformly sample a point on the (2F − 1)-dimensional

sphere x p( , ; ).
2. If the phase variables of the point satisfy

>+ +x p x p( ) ( )
2

( ) ( )
2

n n k k( ) 2 ( ) 2 ( ) 2 ( ) 2

for any k ≠ n, then accept
the point as the initial condition. Otherwise repeat the
procedure until one point is accepted.

Covariant-Noncovariant. When the covariant mapping
kernel eq 56 is used as the mapping kernel K̂ele(x, p) in eq
55, in principle any function of phase space variables
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(regardless of whether it is covariant or noncovariant) can be
used as a matrix element of the inverse mapping kernel K̂ele

−1(x,
p), and the frozen nuclei limit is naturally satisfied as long as
the mapping formalism satisfies the exact mapping con-
dition.325,326 This statement was first proved in ref 325 by us in
2022 and then in ref 326. When noncovariant phase space
functions are used in the inverse mapping kernel, the TCFs are
referred as the covariant-noncovariant (cx) TCFs in ref 326. As
an example, the inverse mapping kernel can be defined as
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with the weight function = +w F F( ) ( ( 1 1)/ ),
and the elements of the corresponding normalization factor
tensor are
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The invariant integral measure for cx is dμ(x, p) = Fdxdp. The
cx TCFs satisfy the frozen nuclei limit. It is straightforward to
implement NaF with the cx TCFs, which is denoted as NaF-cx.
The initial condition of (x, p) is uniformly sampled on

x p( , ; ) with = +F F( 1 1)/ . Similar to NaF-cc, the
commutator matrix with the initial condition in eq 59 is also
critical for NaF-cx to approach the correct Born−Oppenheimer
limit.

Finally, when both nuclear and electronic DOFs are
considered, the phase space counterpart of the quantum TCF

= [ | | | | ]D t n m e B k l e( ) Tr ( )n e
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can be written as
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where the phase space functions of nuclear operators are

= [ ]KR P R P( , ) Tr ( , )nnuc nuc nuc (75)

= [ ]B B KR P R P( , ) Tr ( , )nnuc nuc nuc
1

(76)

Here, when not otherwise specified, an operator of pure
nuclear DOFs B̂nuc is treated as | |=B k kk

F
nuc 1 . When

Wigner phase space is employed for nuclear DOFs, the inverse
mapping kernel K̂nuc

−1 (R, P) is identical to the mapping kernel
defined in eq 18. In this paper, we utilize only Wigner phase
space6 for nuclear DOFs. We note that other quantum phase
space representations for nuclear DOFs10,12,15 may also be
feasible for the NaF implementation.

3. NUMERICAL RESULTS OF MODEL SYSTEMS
In this section, we apply the NaF methods outlined in Sub-
Section 2.4 and listed in Table 1 to various typical model

systems, including linear vibronic coupling models, one-
dimensional nonadiabatic scattering models, system-bath
systems with two or more states, and atom-in-cavity models.
The results produced by NaF methods will be compared with
the numerically exact results. Additionally, we employ three
SH methods for comparison with NaF methods, namely, SH-
1,253 SH-2295 and SH-3.294 Because SH-3 is applicable to only
two-state systems, its results are but available for the two-state
cases in the following benchmark tests. Unless otherwise
specified, the TCFs are calculated in the diabatic representa-
tion in all cases where exact results are available only in the
diabatic representation. While simulations using SH methods
can only be performed in the adiabatic representation, NaF
simulations can be performed in either the adiabatic or diabatic
representation, leading to same numerically converged results
(see Section S3 of the Supporting Information).

Our simulations are conducted on the new Sunway
supercomputer. The heterogeneous platform is composed of

Table 1. CPS Representations of the Electronic Time Correlation Function (by Using Equations 53−55) in Sub-Section 2.4

Method
Elements of mapping kernel

Knm

Elements of inverse mapping kernel
Kkl
−1 Weight function w(γ)

Normalization factor
C̅nm,kl (t)

Initial Condition of
Γ

NaF-cc eq 56 eq 57 δ(γ − γ0); γ0 = 1/2 1 eq 59
NaF-TW eq 60 eq 62 (n = m) eq 64 eq 66 11

3
eq 63 (n ≠ m)

NaF-TW2 eq 60 eq 62 (n = m) eq 64 eq 66 eq 59
eq 63 (n ≠ m)

NaF-HW eq 67
eq 68 (n = m) +( )F

F
1 1 eq 70 + 1F

F
1 1

eq 57 (n ≠ m)
NaF-HW2 eq 67 eq 68 (n = m) +( )F

F
1 1 eq 70 eq 59

eq 57 (n ≠ m)

NaF-cx eq 56 eq 71 +( )F
F
1 1 eq 72 eq 59

Table 2. Number of Trajectories and the Time-Step Size for
NaF Methods for Benchmark Models

Model Time-step Size Number of trajectories

Pyrazine LVCM 0.01 fs ∼105

Cr(CO)5 LVCM 0.01 fs ∼105

Thymine LVCM 0.01 fs ∼105

Tully models 0.01 fs ∼105

3-state photodissociation models 0.01 fs ∼106

2-state photodissociation model 0.01 fs 6 × 105

Spin-boson models 0.01 au ∼5 × 105

FMO model 0.5 fs ∼106

Singlet fission model 0.005 fs ∼105

Atom-in-cavity models 0.1 au ∼105

One-dimensional Holstein model 0.5 au ∼106
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millions of SW26010-Pro CPUs, each with 6 core groups
(CGs) of a management processing element (MPE), 64
computing processing elements (CPEs) and 16 GB DDR4
memory. By implementing our nonadiabatic dynamics
program with MPI and Athread, it can take full advantage of
the super large-scale. The program package greatly enhances
the efficiency of simulating long-time dynamics of nonadiabatic
systems with numerous DOFs. Table 2 provides the
parameters (the time-step size, the number of trajectories,
etc.) for obtaining fully converged results of NaF methods for
each benchmark model. We divide the trajectories into 20
groups to calculate the standard error of each physical
property. The error bar for each result is plotted in the figure,

although it is often smaller than the width of the line or the size
of the marker. Similar numbers of trajectories are used in SH
methods for obtaining fully converged results. We note that the
number of NaF trajectories or SH trajectories can be
considerably decreased when a larger error bar is tolerated.
3.1. Linear Vibronic Coupling Models. The linear

vibronic coupling model (LVCM) is a typical model for
studying dynamics around molecular conical intersections. The
Hamiltonian (in the diabatic representation) is Ĥ = Ĥ0 + ĤC,
with

= +
=

H P R
2

( )
k

N
k

k k0
1

2 2nuc

(77)

Figure 1. Results of the 24-mode LVCM for pyrazine. Panels (a1)-(a4): Population of the state 2. Panels (b1)-(b4): The average dimensionless
coordinate ⟨R̅(t)⟩ of the nuclear normal mode v6a. Panels (c1)-(c4): The average dimensionless momentum ⟨P̅(t)⟩ of the nuclear normal mode v6a.
In panels (a1), (b1) and (c1), the green, blue and cyan solid lines represent the results of NaF-cc, NaF-cx and NaF-TW, respectively. In panels
(a2), (b2) and (c2), the cyan, pink, orange and magenta solid lines represent the results of NaF-TW, NaF-TW2, NaF-HW and NaF-HW2,
respectively. In panels (a3), (b3) and (c3), the orange dashed line, purple dashed line, brown dashed line and cyan solid line denote the results of
SH-1, SH-2, SH-3 and NaF-TW, respectively. In panels (a4), (b4) and (c4), the blue dashed line, green dashed line and cyan solid line denote the
results of CMM (γ = 0.366), CMM (γ = 0.5) and NaF-TW, respectively. The numerically exact results produced by MCTDH361 are demonstrated
by black solid lines with black points in each panel.
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where Pk and =R k N( 1, ... , )k represent the dimensionless
weighted normal-mode momentum and coordinate of the k-th
nuclear DOF, respectively, and ωk represents the correspond-
ing vibrational frequency. The relation between {R̅k, P̅k} and
the corresponding canonical (mass-weighted) coordinate/
momentum, {Rk, Pk}, in the diabatic representation reads

=R Rk k k and =P P /k k k . The electron−nuclear cou-
pling term is
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where En (n = 1, ...,F) represents the vertical excitation energy
of the n-th state, while κk

(n) and λk
(nm) denote the linear coupling

terms of the k-th nuclear DOF for the corresponding diagonal
and off-diagonal elements, respectively.

Two typical 2-state LVCMs for pyrazine�the 3-mode
model of ref 358 and the 24-mode model of ref 359 are
considered. The 3-state 2-mode LVCM of ref 360, which
describes the dynamics of Cr(CO)5 through a Jahn−Teller
conical intersection after photodissociation, is also tested. The
parameters and more details of these three models are
described in refs 358−360 and also summarized in our
previous work.322 Both electronic population and nuclear
properties are investigated and compared with the numerically

Figure 2. Results of the 3-mode LVCM for pyrazine. Panels (a1)-(a4): Population of the state 2; Panels (b1)-(b4): The average dimensionless
coordinate ⟨R̅(t)⟩ of the nuclear normal mode v6a; Panels (c1)-(c4): The average dimensionless momentum ⟨P̅(t)⟩ of the nuclear normal mode v6a.
In panels (a1), (b1) and (c1), the green, blue and cyan solid lines represent the results of NaF-cc, NaF-cx and NaF-TW, respectively. In panels
(a2), (b2) and (c2), the cyan, pink, orange and magenta solid lines represent the results of NaF-TW, NaF-TW2, NaF-HW and NaF-HW2,
respectively. In panels (a3), (b3) and (c3), the orange dashed line, purple dashed line, brown dashed line, and cyan solid line denote the results of
SH-1, SH-2, SH-3 and NaF-TW, respectively. In panels (a4), (b4) and (c4), the blue dashed line, green dashed line and cyan solid line denote the
results of CMM (γ = 0.366), CMM (γ = 0.5) and NaF-TW, respectively. The numerically exact results produced by MCTDH361 are demonstrated
by black solid lines with black points in each panel.
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Figure 3. Results of the 2-mode LVCM for the Cr(CO)5 molecule. Panel (a1)-(a10): Population dynamics, where the black, red and blue solid
lines represent the population of states 1−3, respectively, and the numerically exact results (taken from ref 360) are plotted by dashed lines with
corresponding colors. Panel (a1): NaF-cc. Panel (a2): NaF-cx. Panel (a3): NaF-TW. Panel (a4): NaF-TW2. Panel (a5): NaF-HW. Panel (a6):
NaF-HW2. Panel (a7): SH-1. Panel (a8): SH-2. Panel (a9): CMM (γ = 0.333). Panel (a10): CMM (γ = 0.5). Panels (b1)-(b4): The average
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exact results produced by MCTDH.134 The Heidelberg
MCTDH package (V8.5)361 is employed for producing the
exact data of the LVCMs for pyrazine, while the benchmark
data of the Cr(CO)5 model are directly obtained from ref 360.

In addition, a 7-state 39-mode LVCM of Thymine362 is
investigated in this paper. This model, proposed by Improta,
Santoro and their co-workers, is established from CAM-B3LYP
calculations.362 We only consider the case where the ππ*2
state is initially occupied, with each nuclear mode in its
corresponding vibrational ground state. The exact results
provided by ML-MCTDH136,137 are available in ref 362.
Although this LVCM includes seven states, we focus on three

of them: the nOπ*1 state, the ππ*1 state and the ππ*2 state.
These three states exhibit the most significant population
transfer among all the states.

Figures 1−3 present the results of the LVCMs for pyrazine
and Cr(CO)5, demonstrating both the electronic population
and nuclear properties. All SH methods and NaF methods
produce similar reasonable descriptions in both electronic and
nuclear dynamics of the LVCMs for these two molecules. We
also show the results of CMM235,318,319 using the smallest and
largest values of γ in the region [ + ]F F( 1 1)/ , 1/2
recommended in refs 11 and 320. Although CMM often
demonstrates superior performance in various benchmark

Figure 3. continued

dimensionless coordinate ⟨R̅(t)⟩ of the second nuclear normal mode. In panel (b1), the green, blue and cyan solid lines represent the results of
NaF-cc, NaF-cx and NaF-TW, respectively. In panel (b2), the cyan, pink, orange and magenta solid lines represent the results of NaF-TW, NaF-
TW2, NaF-HW and NaF-HW2, respectively. In panel (b3), the orange dashed line, purple dashed line and cyan solid line denote the results of SH-
1, SH-2 and NaF-TW, respectively. In panel (b4), the blue dashed line, green dashed line and cyan solid line denote the results of CMM (γ =
0.333), CMM (γ = 0.5) and NaF-TW, respectively. Note that SH-3 is not applicable for this 3-state model. The numerically exact results produced
by MCTDH (taken from ref 360) are demonstrated by black solid lines with black points in panels (b1)-(b4).

Figure 4. Results of the 39-mode LVCM for the Thymine parametrized from the CAM-B3LYP calculations. In each panel, population dynamics of
3 states are demonstrated, where the blue, green and orange solid lines represent the population of the nOπ*1 state, the ππ*1 state and the ππ*2
state, respectively. Panel (a): NaF-cc. Panel (b): NaF-cx. Panel (c): NaF-TW. Panel (d): NaF-TW2. Panel (e): NaF-HW. Panel (f): NaF-HW2.
Panel (g): SH-1. Panel (h): SH-2. Panel (i): CMM (γ = 0.261). Panel (j): CMM (γ = 0.5). Note that SH-3 is not applicable for this 7-state model.
The numerically exact results produced by ML-MCTDH (taken from ref 362) are demonstrated by dashed lines with corresponding colors in each
panel.
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condensed-phase models, it may produce unphysical negative
populations and performs poorly for nuclear dynamics of
LVCMs, of which such drawbacks have already been
demonstrated in several (gas-phase) models in our previous
works, e.g., in Figures 1 and 3 of ref 320 and Figure 7 of ref 12.
It is evident from Panel (a4) of Figure 1 for pyrazine and from
Panel (i) of Figure 4 for Thymine that = +F F( 1 1)/
should not be the best choice for phase space parameter γ for
CMM for general real molecular systems. Figure 4 illustrates

population dynamics of the LVCM for Thymine where 39
modes are included. Neither SH nor CMM methods offer
reasonable predictions for this model. In contrast, NaF
methods consistently demonstrate better performance in
reasonably describing the population transfer of this LVCM
model. Figure 4 for Thymine implies that the nonadiabatic
(nuclear) force can play an important role around CI regions
(for LVCMs) for real large molecular systems.

Although both CMM(cv) and NaF employ the CPS
formulation, Figures 1−4 show that NaF is superior to

Figure 5. Results of the SAC and DAC models. Panels (a1) and (b1): transmission probabilities on the adiabatic ground and excited state of the
SAC model, respectively. Panels (c1) and (d1): transmission probabilities on the adiabatic ground and excited state of the DAC model,
respectively. In panels (a1), (b1), (c1) and (d1), the green, blue, and cyan solid lines represent the results of NaF-cc, NaF-cx and NaF-TW,
respectively. Panels (a2), (b2), (c2) and (d2) are similar to panels (a1), (b1), (c1) and (d1), respectively, but the cyan, pink, orange and magenta
solid lines denote the results of NaF-TW, NaF-TW2, NaF-HW and NaF-HW2, respectively. Panels (a3), (b3), (c3) and (d3) are similar to panels
(a1), (b1), (c1) and (d1), respectively, but the orange dashed lines, purple dashed lines, brown dashed lines and cyan solid lines denote the results
of SH-1, SH-2, SH-3 and NaF-TW, respectively. The numerically exact results produced by DVR363 are demonstrated by black points in each
panel.
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CMM(cv) for LVCMs of real molecular systems. Because
CMM(cv) employs Ehrenfest-like dynamics, the comparison in
Figures 1−4 agrees with the conclusion of refs 322 and 324
that NaF performs better than Ehrenfest-like dynamics when
both nuclear and electronic motion is considered in the
asymptotic region where the nonadiabatic coupling disappears.
We then only focus on NaF with the CPS formulation in the
following benchmark tests.
3.2. Nonadiabatic Scattering Processes in the Gas

Phase. We demonstrate the performance of NaF methods on

gas-phase scattering problems with one nuclear DOF. We first

consider Tully’s three scattering models with one nuclear DOF

and two electronic states,253 namely, the single avoided

crossing (SAC) model, the dual avoided crossing (DAC)

model and the extended coupling region (ECR) model. The

potential energy operator in the diabatic representation is V̂(R)

= V11(R)|1⟩⟨1| + V22(R)|2⟩⟨2| + V12(R)(|1⟩⟨2| + |2⟩⟨1|), where

Figure 6. Results of the ECR models. Panels (a1) and (b1): transmission probabilities on the adiabatic ground and excited state, respectively.
Panels (c1) and (d1): reflection probabilities on the adiabatic ground and excited state, respectively. In panels (a1), (b1), (c1) and (d1), the green,
blue, and cyan solid lines represent the results of NaF-cc, NaF-cx and NaF-TW, respectively. Panels (a2), (b2), (c2) and (d2) are similar to panels
(a1), (b1), (c1) and (d1), respectively, but the cyan, pink, orange and magenta solid lines denote the results of NaF-TW, NaF-TW2, NaF-HW and
NaF-HW2, respectively. Panels (a3), (b3), (c3) and (d3) are similar to panels (a1), (b1), (c1) and (d1), respectively, but the orange dashed lines,
purple dashed lines, brown dashed lines and cyan solid lines denote the results of SH-1, SH-2, SH-3 and NaF-TW, respectively. The numerically
exact results produced by DVR363 are demonstrated by black points in each panel.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Review

https://doi.org/10.1021/acs.jctc.5c00181
J. Chem. Theory Comput. 2025, 21, 3775−3813

3791

https://pubs.acs.org/doi/10.1021/acs.jctc.5c00181?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00181?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00181?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00181?fig=fig6&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00181?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


=

=

=

| |V R A e R

V R V R

V R Ce

( ) (1 )sgn( )

( ) ( )

( )

B R

DR

11

22 11

12
2

(79)

for the SAC model with A = 0.01, B = 1.6, C = 0.005 and D =

1.0 (all in atomic units, the same below),

=

= +

=

V R

V R Ae E

V R Ce

( ) 0

( )

( )

BR

DR

11

22 0

12

2

2

(80)

for the DAC model with A = 0.1, B = 0.28, C = 0.015, D = 0.06

and E0 = 0.05, and
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for the ECR model with B = 0.9, C = 0.1 and E0 = − 0.0006,
respectively. The system is initially in the electronic ground
state in the adiabatic representation with the nuclear mass M =
2000 au and the nuclear wave function

+R e( ) R R P R R( ) /2 i ( )0
2

0 0 (82)

The corresponding Wigner distribution of eq 82 reads

R P e( , )W
R R P P( ) ( ) /0

2
0

2

(83)

where the center of the wave function, R0, is set to −3.8, −10,
and −13 au for SAC, DAC, and ECR models, respectively. The
width parameter α = 1. Initial momentum P0 is adjustable. The
scattering probabilities of each channel in the adiabatic

Figure 7. Results of Model 2 of the 3-state photodissociation models. In panels (a)-(h), the black, red and blue dashed lines represent population
dynamics of states 1−3, respectively. Panel (a): NaF-cc. Panel (b): NaF-cx. Panel (c): NaF-TW. Panel (d): NaF-TW2. Panel (e): NaF-HW. Panel
(f) NaF-HW2. Panel (g): SH-1. Panel (h): SH-2. Note that SH-3 is not applicable for this 3-state model. The numerically exact results produced by
DVR363 are demonstrated by solid lines with corresponding colors in panels (a)-(h). Panels (i)-(k) illustrate the nuclear momentum distribution at
200 fs. The green, blue, and cyan solid lines in panel (i) represent the results of NaF-cc, NaF-cx and NaF-TW, respectively. The cyan, pink, orange
and magenta solid lines in panel (j) denote the results of NaF-TW, NaF-TW2, NaF-HW and NaF-HW2, respectively. The orange dashed lines,
purple dashed lines and cyan solid lines in panel (k) denote the results of SH-1, SH-2 and NaF-TW, respectively. The black solid lines in panels (i)-
(k) denote the numerically exact results produced by DVR.363
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representation are investigated. For these three models, the
TCFs are directly expressed and calculated in the adiabatic
representation. The numerically exact results are produced by
using Colbert and Miller’s version of the discrete variable
representation (DVR) of ref 363.

Figures 5 and 6 illustrate the scattering probability in the
adiabatic representation for all Tully models versus P0. SH-1
performs reasonably for the SAC and DAC models. Although
SH-2 and SH-3 are consistent with SH-1 in the large
momentum region, they perform worse than SH-1 in the
relatively small momentum region. For example, both SH-2
and SH-3 underestimate the transmission probability of the
electronic ground state in the SAC and DAC models for small
P0. Additionally, SH-2 even produces negative transmission
probabilities for the electronic excited state. All NaF methods

yield relatively more accurate results than SH-2 for the SAC
and DAC models. For the more challenging ECR model, the
transmission probabilities obtained from SH-1 and SH-3 show
overall good agreement with numerically exact results. SH-2
and all NaF methods underestimate the transmission
probabilities on the electronic ground state in the intermediate
momentum region. NaF-cc also significantly overestimates the
transmission probability on the electronic excited state in the
intermediate momentum region, while SH-2, NaF-cc and NaF-
cx exhibit negative probability issues. NaF-TW, NaF-TW2,
NaF-HW and NaF-HW2 yield more accurate results than
other NaF methods due to their positive semidefinite TCFs for
population dynamics.

In addition, we employ three anharmonic photodissociation
models with three electronic states, developed by Miller and

Figure 8. Results of the 2-state photodissociation model. In panels (a)-(i), the black and red dashed lines represent population dynamics of states 1
and 2, respectively. Panel (a): NaF-cc. Panel (b): NaF-cx. Panel (c): NaF-TW. Panel (d): NaF-TW2. Panel (e): NaF-HW. Panel (f) NaF-HW2.
Panel (g): SH-1. Panel (h): SH-2. Panel (i): SH-3. The numerically exact results produced by DVR363 are demonstrated by solid lines with
corresponding colors in panels (a)-(i). Panels (j)-(l) illustrate the nuclear momentum distribution at 200 fs. The green, blue, and cyan solid lines in
panel (j) represent the results of NaF-cc, NaF-cx and NaF-TW, respectively. The cyan, pink, orange and magenta solid lines in panel (k) denote the
results of NaF-TW, NaF-TW2, NaF-HW and NaF-HW2, respectively. The orange dashed lines, purple dashed lines, brown dashed lines and cyan
solid lines in panel (l) denote the results of SH-1, SH-2, SH-3 and NaF-TW, respectively. The black solid lines in panels (j)-(l) denote the
numerically exact results produced by DVR.363
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co-workers.185 The diagonal elements of the potential matrix in
the diabatic representation are Morse potential functions

= [ ] + =V R D e C n( ) 1 , 1, 2, 3nn n
R R

n
( ) 2n n (84)

while the diabatic coupling elements are Gaussian functions:
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All parameters for these three models are provided in ref 185
and are also summarized in our pervious works.320,322 We
present the results of only Model 2 in the main text, leaving the
other two models in Section S7 of the Supporting Information.
The initial values of the nuclear DOF with mass M = 20000 au
are sampled from the Wigner distribution function:

R P e( , )W
M R R P M( ) /e

2 2

(86)

Here ω = 0.005 au and Re = 3.3 au for Model 2. The electronic
DOFs are initially excited on the first electronic state. The
numerically exact results are produced by DVR.363

Panels (a)-(h) of Figure 7 present the electronic population
dynamics of Model 2 of the 3-state photodissociation models.
Interestingly, population dynamics generated by SH-2,
illustrated in panel (h) of Figure 7, exhibit unreasonable
oscillations. These oscillations are due to the unphysical
momentum reversal for the frustrated hops in the SH-2
algorithm.295 This can also be inferred from the nuclear
properties. Panels (i)-(k) of Figure 7 illustrate the nuclear
momentum distribution in the asymptotic region (t = 200 fs)
(See Sub-Section S1-E of the Supporting Information340 of ref

Figure 9. Results of the population difference D(t) = ρ11(t) − ρ22(t) of spin-boson models with Ohmic spectral density at β = 5. The first to fourth
rows illustrate the models with parameters {α = 0.1, ωc = 1}, {α = 0.4, ωc = 1}, {α = 0.1, ωc = 2.5} and {α = 0.4, ωc = 2.5}, respectively. In panels
(a1), (b1), (c1) and (d1), the green, blue and cyan solid lines represent the results produced by NaF-cc, NaF-cx and NaF-TW, respectively. Panels
(a2), (b2), (c2) and (d2), the cyan, pink, orange and magenta solid lines denote the results produced by NaF-TW, NaF-TW2, NaF-HW and NaF-
HW2, respectively. In panels (a3), (b3), (c3) and (d3), the orange dashed lines, purple dashed lines, brown dashed lines and cyan solid lines
denote the results produced by SH-1, SH-2, SH-3 and NaF-TW, respectively. The numerically exact results produced by eHEOM122−127,383 are
demonstrated by black points in each panel.
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322 for further details), where panel (k) shows that the nuclear
momentum distribution of SH-2 has a greater proportion
falling into the negative momentum region compared to those
of SH-1 and NaF methods, indicating that the momentum
reversal procedure affects the direction of nuclear momentum
even in the long-time region. Note that SH-1 and all NaF
methods shown here do not involve any momentum reversal,
which consistently provide accurate descriptions for electronic
population dynamics of this model. (The algorithm of SH-1
utilized in this work can be referred to Section S7 of the
Supporting Information340 of ref 322) The differences in
performance of all NaF methods are marginal for the other two
models, but all of them slightly outperform SH-1 and SH-2, as
demonstrated in Section S7 of the Supporting Information.

We further test a two-state anharmonic photodissociation
model. The diagonal elements of the diabatic potential energy
matrix are identical to states 1 and 3 of Model 2 of the 3-state
photodissociation model, while the off-diagonal elements
follow eq 85 with parameters A12 = A21 = 0.005 au, R12 =
R21 = 3.34 au and α12 = α21 = 8 au. All other computational
settings remain the same as those of Model 2 of the three-state

photodissociation model. Figure 8 illustrates population
dynamics of the first diabatic state and the nuclear momentum
distribution at 200 fs of the 2-state photodissociation model.
As shown in panels (h) and (i) of Figure 8, both population
dynamics of SH-2 and that of SH-3 exhibit artificial
oscillations, indicating that the reversal of momentum in the
frustrated hopping event in the two SH algorithms leads to
unphysical behavior for the two-state benchmark model. As
demonstrated in panel (g) of Figure 8, SH-1 provides
physically correct population transfer behavior, but the results
considerably deviate from the exact data. In contrast, all NaF
methods consistently produce more accurate results for
population dynamics, as illustrated in panels (a)-(f) of Figure
8. All NaF methods and SH methods generate comparable
reasonable nuclear momentum distribution in the asymptotic
region.
3.3. System-Harmonic Bath Models. System-harmonic

bath models are widely employed to study condensed-phase
dissipative processes, quantum phase transitions, quantum
thermodynamics, heat/energy transport/relaxation properties,
and electron/proton transfer processes in physics, chemical,

Figure 10. Similar to Figure 9, but illustrates the results of the modulus of the off-diagonal term |ρ12(t)|.
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biological, materials, quantum computation and quantum
information systems.208,213,223,364−373 These models also
serve as benchmark problems for testing nonadiabatic
dynamics methods,11,12,191,195,200,209,318,319,322,324,374−377 be-
cause numerically exact results are often available by real-
time path integral methods,108−110,114−116,120 (ML-)-
MCTDH,134−137 TD-DMRG,151−160 HEOM,122−127 etc. The
Hamiltonian operator can be divided into three parts: the
system part, the harmonic bath, and the bilinear coupling term:

= + +H H H Hs b s b (87)

A typical example is the 2-state spin-boson model,366 whose
Hamiltonian is of the form

= +Hs z x
(spin boson)

(88)
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where σ̂z = |1⟩⟨1| − |2⟩⟨2| and σ̂x = |1⟩⟨2| + |2⟩⟨1| are the
corresponding components of the Pauli operators. Another
type is the site-exciton model,378 which reads
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where Nb = Nnuc/F represents the number of bath modes on
each site/state.

The frequencies, {ωj}, and coefficients, {cj}, of bath DOFs
are often obtained by discretizing the spectral density as first
suggested by Makri in ref 379. For the Ohmic spectral density

=J e( )
2

/ c with Kondo parameter α and cutoff

frequency ωc, the discretization scheme is often presented
as379,380
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Figure 11. Results of population dynamics of the 7-state FMO model at 77 K. 50 nuclear (bath) modes in the discretization scheme are employed
for each state in the simulations. In each panel, the red, blue, green, orange, purple, brown and cyan solid lines represent the population of states 1−
7, respectively. Panel (a): NaF-cc. Panel (b): NaF-cx. Panel (c): NaF-TW. Panel (d): NaF-TW2. Panel (e): NaF-HW. Panel (f) NaF-HW2. Panel
(g): SH-1. Panel (h): SH-2. Note that SH-3 is not applicable for this 7-state model. The numerically exact results produced by TD-DMRG151−160

for the same effective Hamiltonian in the discretization scheme are demonstrated by dashed lines with corresponding colors in each panel.
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Similarly, the Debye spectral density =
+

J( ) 2 c

c
2 2 with

reorganization energy λ and characteristic frequency ωc is
discretized as135,374,381
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More recent progress on obtaining the harmonic-bath
parameters from molecular dynamics simulations has been
discussed in ref 382. The initial density is often set as the
tensor product between the density of system and the thermal
equilibrium density of bath DOFs:

= [ ]e e(0) /Trs
H Hb b (96)

We first utilize four spin-boson models with Ohmic spectral
density at low temperature β = 5. The values of the Kondo
parameter and the cutoff frequency are listed in α ∈ {0.1, 0.4}
and ωc ∈ {1, 2.5}, and the energy bias and the coupling are set
to ε = Δ = 1. The system is initially in state |1⟩ (that is, ρ̂s =
|1⟩⟨1|). 300 bath DOFs are utilized for each spin-boson model.
These models have been tested in refs 12, 319, 322, and 324,
where the numerically exact results produced by extended
hierarchy equations of motion (eHEOM)122−127,383 are

available. In principle, one can also produce numerically
exact data from other benchmark methods. Figures 9 and 10
illustrate electronic population and coherence dynamics of all
spin-boson models, respectively. The results generated by SH
methods deviate from the exact data since relatively short time,
especially for the models with higher cutoff frequencies and
stronger system-bath coupling. In comparison, the data
produced by NaF methods exhibit better agreements with
the numerically exact results in all cases.

We also consider two multistate site-exciton models with
Debye spectral density, which are derived from real chemical
systems. The first model is the 7-state Fenna-Matthews-Olson
(FMO) model, which describes the exciton energy transfer
processes within the light-harvesting complex in green sulfur
bacteria.81,189,384−389 The system Hamiltonian is given by
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1

(97)

The parameters of the spectral density are λ = 35 cm−1 and ωc
= 106.14 cm−1. We employ 50 bath modes for each state. The

Figure 12. Results of the coherence dynamics of the 7-state FMO model at 77 K. 50 nuclear (bath) modes in the discretization scheme are
employed for each state in the simulations. In each panel, the red, blue, green, and purple solid lines represent the moduli of the off-diagonal terms
ρ12, ρ13, ρ15 and ρ34, respectively. Panel (a): NaF-cc. Panel (b): NaF-cx. Panel (c): NaF-TW. Panel (d): NaF-TW2. Panel (e): NaF-HW. Panel (f)
NaF-HW2. Panel (g): SH-1. Panel (h): SH-2. Note that SH-3 is not applicable for this 7-state model. The numerically exact results produced by
TD-DMRG151−160 for the same effective Hamiltonian in the discretization scheme are demonstrated by dashed lines with corresponding colors in
each panel.
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first state of the system is initially occupied, with temperature
set at T = 77 K. Numerically exact data are obtained from TD-
DMRG calculations,151−160 using the same discretization
scheme to establish a Hamiltonian operator for the FMO
model, which are also employed by trajectory-based methods.
This ensures that all methods are fairly compared for a well-
defined quantum mechanical Hamiltonian operator. The
second case is a 3-state model used to describe the singlet
fission (SF) of pentacene.214,390 The system Hamiltonian is

i

k

jjjjjjjjj

y

{

zzzzzzzzz
=H

0.2 0.05 0
0.05 0.3 0.05
0 0.05 0

eVS

(98)

where the three states represent the high-energy singlet state
(S1), the charge-transfer state (CT), and the multiexciton state
(TT), respectively. The parameters of the Debye spectral
density are λ = 0.1 eV and ωc = 0.18 eV. 200 bath modes are
utilized for each state. The system is initially located at the S1
state, and the temperature is set at 300 K. The numerically
exact data for the SF model are obtained from HEOM.122−126

Figures 11 and 12 present the results of electronic
population and coherence dynamics of the 7-state FMO
model, respectively. We evolve the trajectories up to 10000 fs,
approaching the long-time steady-state region. As shown in
Figure 11(g) and Figure 12(g), SH-1 is not able to produce
reasonable results for this model. Interestingly, although SH-2
outperforms SH-1 in the first 1000 fs, the long-time predictions
by SH-2 are not reasonable. SH-2 generates the unphysical
attenuation rather than the plateau for the population of the
third state, as well as for the coherence term |ρ34| after 2000 fs.
This indicates that SH-2 does not rationally describe the
steady-state region in the long-time limit. We note that the SH-
2 results shown in Figures 11 and 12 differ from those
presented in ref 295. This discrepancy arises because ref 295

used the classical Boltzmann distribution instead of the Wigner
distribution for sampling the initial values of nuclear DOFs,
thus excluding any nuclear quantum effects (for bath modes)
during the simulations. TD-DMRG suggests that quantum
effects in nuclear dynamics are not negligible for the FMO
model at 77 K. Even when only electronic dynamics is
investigated, nuclear (bath) modes should be treated quantum
mechanically to predict time-dependent electronic properties
for the right reason. Compared to the exact data produced by
TD-DMRG using the identical Hamiltonian operator (with the
same number of bath modes), SH-2 fails to describe the
correct long-time asymptotic behavior in the steady-state
region when nuclear quantum effects are not neglected. In
comparison, all NaF methods, with nuclear (bath) DOFs
consistently sampled from the Wigner distribution, produce
overall reasonable results and outperform the SH methods.
While NaF-cc and NaF-cx yield more accurate population
dynamics in the first 1000 fs, NaF-TW, NaF-TW2, NaF-HW,
and NaF-HW2 predict more reasonable long-time population
dynamics. In addition, NaF-TW, NaF-TW2, NaF-HW, and
NaF-HW2 exhibit better performance than other NaF methods
in describing the coherence dynamics, especially in the long-
time region (after 1000 fs).

Figures 11 and 12 imply the importance of nuclear
nonadiabatic force for correctly describing the quantum
mechanical behavior of both electronic and nuclear motion
in the model system. Since the mixed quantum-classical limit
(where nuclear DOFs are treated classically and electronic
DOFs are treated quantum mechanically) is not defined
without any ambiguity for nonadiabatic systems where nuclear
motion and electronic motion are coupled, caution should of ten
be taken when nuclear DOFs are described by classical
mechanics in either thermodynamics or nonadiabatic transition
dynamics. For instance, when the number of path integral
beads becomes one in the adiabatic representation for coupled

Figure 13. Population dynamics of the SF model. 200 nuclear modes are employed for each state in the simulations. In each panel, the black, red
and cyan solid lines represent the population of the S1, TT and CT state, respectively. Panel (a): NaF-cc. Panel (b): NaF-cx. Panel (c): NaF-TW.
Panel (d): NaF-TW2. Panel (e): NaF-HW. Panel (f) NaF-HW2. Panel (g): SH-1. Panel (h): SH-2. Note that SH-3 is not applicable for this 3-state
model. The numerically exact results produced by HEOM122−126 are demonstrated by dashed lines with corresponding colors in each panel.
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multi-electronic-state systems, nuclear DOFs are treated
classically, but such a mixed quantum-classical limit does not
always leads to consistent results for electronic thermodynamic
properties.376

The results of 7-state FMO model at zero temperature (0 K)
are presented in Section S7 of the Supporting Information,
which provides a significant challenging test for trajectory-
based nonadiabatic dynamics methods. When the initial
nuclear distribution is described by classical mechanics for
this case, it does not yield any meaningful results for NaF, SH,
or other independent-trajectory-based nonadiabatic dynamics
methods. Even in such a challenging case, NaF methods also
lead to reasonably good results (in comparison to the TD-
DMRG results) and consistently outperform SH methods. The
zero-temperature benchmark test case of the effective
Hamiltonian in the discretization scheme of the FMO model
in Section S7 of the Supporting Information is also heuristic.
The initial nuclear condition of many practical ab initio
photodynamics simulations is set to be the ground vibrational

state of an electronic state (e.g., often the ground adiabatic
electronic state or a diabatic state) of the real multidimensional
molecular system before photoexcitation. Such an initial
condition is equivalent to the zero-temperature limit for
nuclear DOFs on a single adiabatic or diabatic state PES of a
complex molecular system.

Figure 13 illustrates electronic population dynamics of the
SF model. Similar to the FMO model, SH-2 also produces
noticeable attenuation of the population dynamics of the TT
state in the long-time dynamics region, in comparison to exact
results. In contrast to SH methods, NaF methods produce
overall more reasonable results.
3.4. Cavity Quantum Electrodynamics Processes. We

employ the atom-in-cavity models in refs 391 and 392 to test
NaF methods on cavity quantum electrodynamics (cQED)
processes.211,216,391−411 Similar to the system-bath models, the
total Hamiltonian of the atom-in-cavity models can be
decomposed into three parts. The atomic part is expensed
by its eigenstates

Figure 14. Population dynamics of the 2-state atom-in-cavity model with 400 standing wave modes. In each panel, the black and red dashed lines
represent the population of the atomic ground and excited state, respectively. Panel (a): NaF-cc. Panel (b): NaF-cx. Panel (c): NaF-TW. Panel (d):
NaF-TW2. Panel (e): NaF-HW. Panel (f) NaF-HW2. Panel (g): SH-1. Panel (h): SH-2. Panel (i): SH-3. The numerically exact results produced
by truncated configuration interaction (taken from refs 391 and 392) are demonstrated by solid lines with corresponding colors in each panel.
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where εn denotes the n-th corresponding atomic energy level.
The optical field part reads
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where aĵ
† (aĵ) denotes the creation (annihilation) operator of

the j-th optical field mode, and ωj represents the corresponding
photonic frequency. The coupling term is represented using
the dipole approximation as
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where μnm denotes the transitional dipole moment between the
atomic eigenstates |n⟩ and |m⟩, and

= =r L j r L j N( ) 2/ sin( / ) ( 1, ..., )j 0 0 0

denotes the atom-optical field interaction. Here L = 2.362 ×
105 au, ε0 and r0 = L/2 denote the volume length of the cavity,
the vacuum permittivity, and the location of the atom,
respectively. We utilize Nnuc = 400 optical field modes with

the frequency ωj = jπc/L, where c = 137.036 au denotes the
light speed in vacuum.

Two models are considered in this work, one is the two-state
model with the atomic energy levels ε1 = − 0.6738, ε2 = −
0.2798, and the dipole moments μ12 = − 1.034. The other
model is the three-state model, which extends from the two-
state model with an additional atomic energy level ε3 = −
0.1547 and dipole moment μ23 = − 2.536 (all in atomic units).
The system is initially located at the highest atomic eigenstate,
while each optical field mode is in the corresponding optical
vacuum state (ground state).

When trajectory-based methods are employed for simulating
these two models, it is more convenient to recast the optical
field modes by their canonical coordinates and momentum in
the diabatic representation

= + =† †R a a P a a
1

2
( ), i

2
( )j

j
j j j

j
j j

(102)

and treating {R̂j, P̂j} as continuous nuclear DOFs. This implies
that one can map the optical field modes them onto the
Wigner phase space and employ trajectory-based methods to
study the evolution. Geva and co-workers have applied the
Meyer-Miller mapping model approach to study the same
systems.211 Some more tests have also been performed in refs
11, 12, 320, 322, and 324. Here we compare the results

Figure 15. Population dynamics of the 3-state atom-in-cavity model with 400 standing wave modes. In each panel, the black, red and blue dashed
lines represent the population of the first, second and third atomic state, respectively. Panel (a): NaF-cc. Panel (b): NaF-cx. Panel (c): NaF-TW.
Panel (d): NaF-TW2. Panel (e): NaF-HW. Panel (f) NaF-HW2. Panel (g): SH-1. Panel (h): SH-2. Note that SH-3 is not applicable for this 3-state
model. The numerically exact results produced by truncated configuration interaction (taken from refs 391 and 392) are demonstrated by solid
lines with corresponding colors in each panel.
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obtained by the NaF and SH methods with the numerically
exact results yielded by truncated configuration interaction in
refs 391 and 392.

Figures 14 and 15 illustrate the results of all atom-in-cavity
models. All SH methods exhibit poor performance in both the
short-time spontaneous emission process and the re-
absorption/re-emission process at around 1800 au. In contrast,
all NaF methods offer a much better description of
spontaneous emission as well as the re-absorption/re-emission
processes, and predict more accurate population results in the
plateau region.

4. CONCLUSIONS
We have recently developed NaF, a conceptually novel
nonadiabatic dynamics approach with independent trajectories

on quantum phase space with coordinate-momentum variables,
where CPS is used for discrete electronic-state DOFs and
Wigner phase space is employed for nuclear DOFs. In the
paper we develop an exact integrator for updating the nuclear
kinematic momentum from the contribution of the effective
nonadiabatic force for a finite time-step, which is included in
the efficient algorithm for NaF in the adiabatic representation
described in Section 2.3. When the diabatic representation is

available, two additional efficient algorithms that take
advantage of the diabatic representation are proposed in
Sections S2−S3 of the Supporting Information. We implement
these efficient NaF algorithms with MPI and Athread for the
heterogeneous platform.

We show a few expres s ions o f (e l ec t ron ic)
TCFs195,318,319,324,326 in quantum phase space representation,
then apply them to NaF. These NaF methods are employed to
investigate a suite of benchmark model systems, ranging from
low-dimensional gas-phase models to condensed-phase com-
plex systems, and are compared with numerically exact
approaches and three SH methods. NaF methods are robust
and competent in presenting reasonable descriptions for both
electronic and nuclear motion in the nonadiabatic coupling
region as well as the asymptotic region. As demonstrated in
Figures 1−4 for the LVCMs for molecular CIs, Figures 5 and 6
for one-dimensional scattering models of Tully, and Figure 7
for one-dimensional three-state photodisassociation models of
Miller and co-workers and Figure 8 for a two-state anharmonic
model, the overall performance of NaF methods is comparable
to that of SH methods for gas-phase systems. More
importantly, NaF methods are superior to SH methods in
high-dimensional (condensed-phase) systems where the non-
adiabatic coupling region is wide or the states stay coupled all
the time, as shown in Figures 9 and 10 for spin-boson models,
Figures 11 and 12 for the 7-site FMO model, Figure 13 for the
three-state SF model, and Figures 14 and 15 for cavity-induced
chemical processes. The benchmark tests shown in the present
paper as well as in ref 324 and Section S7 of the Supporting
Information340 of ref 322 imply that, although the phase space
expressions of (electronic) TCFs may also be used with
various surface hopping or Ehrenfest-like dynamics methods,
NaF should always be highly recommended for its superiority.

The suite of benchmark model tests also indicates that the
performance of NaF is relatively insensitive to the phase space
expression of electronic TCFs. In addition, Figure 16
investigates the Holstein model for the carrier mobility of
organic semiconductors, which one of us already studied in ref
412 in 2020. The isomorphism of ref 317 suggests that the
Holstein model can be studied by NaF and other nonadiabatic
dynamics methods. Figure 16 compares the NaF results related
to the electronic coherence-coherence TWF and those
benchmark results produced by TD-DMRG, for the same
initial condition in quantum mechanics. Figure 16 shows that
NaF yields reasonable results in a wide temperature regime. In
addition, as shown in Figure S4 of Section S3 of the
Supporting Information351 of ref 324, NaF methods are
capable of describing the electron transfer rate that is also
related to the electronic coherence-coherence TWF, which
reproduce the Marcus theory413−415 in its valid region. Among
all the NaF methods, NaF-TW is recommended due to its
positive semidefinite TCF of population dynamics and the
overall reasonable accuracy for various model systems. It is
expected that NaF-TW can be performed for simulations of
nonadiabatic transition processes of real molecular systems
with ab initio on-the-fly calculations97,416−427 or machine
learning approaches.237,428−433 It will be intriguing to use NaF
to study electronically (or vibrationally) nonadiabatic
processes involving numerous DOFs, such as electron/hole/
positron/proton/hydrogen transfer and matter/energy trans-
port in bulk or at interfaces in complex systems, especially
where the nonadiabatic coupling region is broad, in chemistry,
physics, materials, biology, and so forth. A simulation package

Figure 16. Benchmark results of μ of the one-dimensional Holstein
model in ref 412 as functions of temperature. In panel (a), the green
hollow circles with green dashed lines, blue hollow squares with blue
dashed lines and cyan triangles with cyan solid lines represent the
results of NaF-cc; NaF-cx and NaF-TW, respectively. In panel (b), the
cyan triangles with cyan solid lines, pink hollow squares with pink
dashed lines, blue squares with blue solid lines, red points with red
dashed lines represent the results of NaF-TW, NaF-TW2, NaF-HW
and NaF-HW2, respectively. In each panel, black points with black
solid lines denote the results of TD-DMRG. (Please see more details
in Section S5 of the Supporting Information.) Figure S2(c) of the
Supporting Information shows that, when the initial nuclear condition
is sampled by classical mechanics, the results significantly deviate from
the TD-DMRG results. It suggests that nuclear quantum effects are
important for this system. Consistent definitions of the electronic
coherence-coherence TCF for multistate systems, which satisfy the
frozen nuclei limit, are not available for these SH methods in the
literature.253,294,295 So it will be fair to compare SH methods to TD-
DMRG and NaF methods in the future.
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for NaF and other nonadiabatic molecular dynamics methods
will be reported by us soon.434

We note that, despite its overall robust superior performance
for various nonadiabatic/composite systems, NaF is not
adequate to describe deep quantum tunneling effects or true
quantum recurrence/coherence/resonance effects, as implied
in Figure S7 of Section S8 of the Supporting Information. This
is because NaF only involves the independent trajectory
without the phase. When the NaF trajectory with its associated
phase is included in the semiclassical analogy approach or
time-dependent multiconfiguration approach, it will offer
potential tools for faithfully describing these more challenging
quantum mechanical effects with more computational effort,
although it is expected that such effects are often quenched in
large molecular systems.

Finally, we suggest that the suite of gas phase and condensed
phase benchmark models in the main text and the Supporting
Information of the paper should be important for testing
various developed or new practical nonadiabatic molecular
dynamics methods in the community. Because numerically
exact results are available for these benchmark models that
represent various regions (or limits) of nonadiabatic transition
processes, it is clean and clear to illustrate whether both
electronic motion and nuclear quantum effects are reasonably
described by the practical method that is designed for ab initio
nonadiabatic quantum molecular dynamics. It will also be
useful to include more typical representative benchmark tests
in the suite. Such a suite will help develop consistent practical
approaches that faithfully capture the main features of the
quantum mechanical behavior of both electrons and nuclei
in nonadiabatic transition processes in real complex molecular
systems.
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BO Born−Oppenheimer
C̅nm, kl(t) time-dependent normalization

factor tensor
cc covariant-covariant
CMM classical mapping model
CMMcv classical mapping model with

commutator variables
CPS constraint coordinate-momen-

tum phase space
cx covariant-noncovariant

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Review

https://doi.org/10.1021/acs.jctc.5c00181
J. Chem. Theory Comput. 2025, 21, 3775−3813

3802

https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c00181/suppl_file/ct5c00181_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c00181/suppl_file/ct5c00181_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c00181/suppl_file/ct5c00181_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00181?goto=supporting-info
https://pubs.acs.org/doi/suppl/10.1021/acs.jctc.5c00181/suppl_file/ct5c00181_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jian+Liu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-2906-5858
https://orcid.org/0000-0002-2906-5858
mailto:jianliupku@pku.edu.cn
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Baihua+Wu"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1256-6859
https://orcid.org/0000-0002-1256-6859
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Bingqi+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xin+He"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-5189-7204
https://orcid.org/0000-0002-5189-7204
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xiangsong+Cheng"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8793-5092
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Jiajun+Ren"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0002-1508-4943
https://pubs.acs.org/doi/10.1021/acs.jctc.5c00181?ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.5c00181?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


dμ(x, p) integral measure of electronic
phase space variables

Dnm, kl(t) time correlation function of
electronic degrees of freedom

Dnm, kl(t) (n = m, k = l) (electronic) population-popula-
tion time correlation function

Dnm, kl(t) (n = m, k ≠ l) (electronic) population-coher-
ence time correlation function

Dnm, kl(t) (n ≠ m, k = l) (electronic) coherence-popula-
tion time correlation function

Dnm, kl(t) (n ≠ m, k ≠ l) (electronic) coherence-coher-
ence time correlation function

DAC dual avoided crossing
DVR discrete variable representation
DOF degree of freedom
ECR extended coupling region
eHEOM extended hierarchy equations of

motion
EOM equation of motion
FMO Fenna-Matthews-Olson
g vector x + ip
γ parameter of constraint coor-

dinate-momentum phase space
Γ commutator matrix of elec-

tronic degrees of freedom
HNaF(R, P, ρ̃) mapping energy on quantum

phase space of nonadiabatic
field

HEOM hierarchy equations of motion
HWF hill window function
K̂ele(x, p, Γ) mapping kernel of electronic

degrees of freedom
K̂ele
−1(x, p, Γ) inverse mapping kernel of elec-

tronic degrees of freedom
K̂nuc(R, P) mapping kernel of nuclear

degrees of freedom
K̂nuc
−1 (R, P) inverse mapping kernel of

nuclear degrees of freedom
LSC-IVR linearized semiclassical initial

value representation
LVCM linear vibronic coupling model
MCTDH multiconfiguration time-de-

pendent Hartree
ML-MCTDH multilayer multiconfiguration

time-dependent Hartree
MM Meyer-Miller
NaF nonadiabatic field
NaF-cc nonadiabatic field with cova-

riant-covariant time correlation
functions

NaF-cx nonadiabatic field with cova-
riant-noncovariant time corre-
lation functions

NaF-HW nonadiabatic field with hill
window functions

NaF-HW2 nonadiabatic field with hill
window functions-2

NaF-TW nonadiabatic field with triangle
window functions

NaF-TW2 nonadiabatic field with triangle
window functions-2

PES potential energy surface

Q̅nm,kl(x, p, Γ; γ; t) integrand of electronic time
correlation function in con-
straint coordinate-momentum
phase space representation

ρ̃(x̃, p̃, Γ̃) effective electronic density ma-
trix in the adiabatic representa-
tion

RHS right-hand side
x p( , ; ) manifold of constraint coordi-

nate-momentum phase space
SAC single avoided crossing
SF singlet fission
SH surface hopping
SQC symmetrical quasi-classical
TCF time correlation function
TD-DMRG time-dependent density matrix

renormalization group
TWF triangle window function.
U(R, Δt) electronic propagator in the

diabatic representation
Ũ(R, Δt) electronic propagator in the

adiabatic representation
w(γ) normalized weight (quasi-prob-

ability distribution) function of
constraint coordinate-momen-
tum phase space
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