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ABSTRACT: Variational wave function ansaẗze are at the heart of
solving quantum many-body problems in physics and chemistry.
Previous designs of hardware-efficient ansatz (HEA) on quantum
computers are largely based on heuristics and lack rigorous
theoretical foundations. In this work, we introduce a physics-
constrained approach for designing HEA with rigorous theoretical
guarantees by imposing a few fundamental constraints. Specifically,
we require that the target HEA to be universal, systematically
improvable, and size-consistent, which is an important concept in
quantum many-body theories for scalability but has been
overlooked in previous designs of HEA. We extend the notion of
size-consistency to HEA and present a concrete realization of HEA
that satisfies all these fundamental constraints while only requiring
linear qubit connectivity. The developed physics-constrained HEA is superior to other heuristically designed HEA in terms of both
accuracy and scalability, as demonstrated numerically for the Heisenberg model and some typical molecules. In particular, we find
that restoring size-consistency can significantly reduce the number of layers needed to reach a certain accuracy. In contrast, the
failure of other HEA to satisfy these constraints severely limits their scalability to larger systems with more than 10 qubits. Our work
highlights the importance of incorporating physical constraints into the design of HEA for efficiently solving many-body problems on
quantum computers.

■ INTRODUCTION
Efficient simulation of quantum many-body problems is an
enduring frontier in computational physics and chemistry.1

Among many different approaches, the variational method
represents a powerful and versatile technique to tackle quantum
many-body problems. A wealth of variational wave function
ansaẗze on classical computers have been developed over the
past decades. Prominent examples include Slater determinants,
Gutzwiller wave function,2 Jastrow wave function,3 tensor
network states,4−10 and neural network (NN) states.11−17

Thanks to the rapid progress on quantum hardware,18,19 the
variational quantum eigensolver (VQE),20,21 which is a hybrid
quantum-classical approach for solving quantum many-body
problems,22 has attracted much attention.23−26 The central
component of VQE is the preparation of a trial wave function on
quantum computers, which ultimately determines the accuracy
of the variational computation. Compared to the development
of variational ansaẗze on classical computers, the exploration of
wave function ansaẗze on quantum computers is still in its
infancy.
Available variational ansa ̈tze on quantum computers

developed so far can be broadly classified into two categories:
physics/chemistry-inspired ansa ̈tze and hardware-efficient

ansaẗze (HEA), each with its own advantages and disadvantages.
The chemistry-inspired unitary coupled cluster (UCC) ansatz27

is the first ansatz proposed for determining molecular ground
states on quantum computers,20 which is motivated by the great
success of the traditional coupled cluster theory on classical
computers.28 However, it quickly becomes impractical for large
molecules on the current noisy intermediate-scale quantum
hardware29 since the circuit depth scales as O(N4) with respect
to the number of qubitsN.30−32 Many efforts have been devoted
to reduce the complexity of UCC, resulting in several
descendants of UCC such as the unitary paired CC ansatz,33

the unitary cluster Jastrow ansatz,34 and some adaptive
variants.35−38 Another type of physics-inspired ansatz is the
Hamiltonian variational ansaẗz (HVA),39,40 which is problem
specific and widely used for model systems.41 When applied to
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general cases, such as the molecular Hamiltonian in quantum
chemistry, it suffers from the same problem as UCC.
HEA were originally proposed as a more practical alternative

on near-term quantum devices.42 It takes the following form

U U U( )... ( ) ( )L L
l

L

l l1 1 0
1

0| = | |
= (1)

where |Φ0⟩ is a reference state and the repeating unitU ( )l l is a
parametrized quantum circuit composed of gates that are native
on quantum hardware,42 such as single-qubit rotation gates and
two-qubit entangling gates (see Figure 1a). Given the hardware

constraints, there is still a great deal of freedom in choosing the
layout of the circuit blockU ( )l l . So far, the architectures of HEA
have been designed mostly by heuristics, and there is no
theoretical guarantee for their performance. Furthermore, the
optimization of HEA is challenging43 as the number of qubits N
and the number of layers L increase due to the proliferation of
low-quality local minima44 and the exponential vanishing of
gradients, known as the “barren plateau” phenomenon.45 These
problems severely limit the scalability of HEA beyond small

systems. Therefore, it is highly desirable to design a variational
ansatz with rigorous theoretical basis, while at the same time
being hardware-efficient on near-term devices.46,47

In this work, we present a new way to design HEA with
rigorous theoretical guarantees by imposing fundamental
constraints. This is inspired by the remarkably successful way
to design exchange−correlation (XC) functionals in density
functional theory (DFT) by requiring the XC functionals to
satisfy exact constraints,48 which has led to reliable nonempirical
XC functionals for a wide range of systems.49,50 We expect that
designing HEA in a similar way can lead to more systematic
construction of variational ansaẗze on quantum computers. The
remaining part of the article is organized as follows: first, we
introduce some fundamental constraints for HEA. Specifically,
we require the ansatz to be universal, systematically improvable,
and size-consistent (or multiplicatively separable), which is an
important property for scalability in quantum many-body
theory. Then, we present one concrete realization that satisfies
all these requirements while requiring only linear qubit
connectivity with nearest neighbor interactions. Consequently,
a layerwise optimization strategy is introduced to take full
advantage of the systematic improvability of the proposed
ansatz, which is shown to alleviate the barren plateau problem.
The effectiveness of this ansatz is demonstrated for the
Heisenberg model and some typical molecules. The comparison
with other HEA shows that incorporating physical constraints
into the design of HEA is a promising way to design more
efficient and scalable variational ansaẗze on quantum computers.

■ THEORY AND ALGORITHM
Fundamental Constraints for HEA. We first introduce

some fundamental constraints that a good HEA should satisfy.
Given a system A, suppose the variational space of HEA with L
layers in eq 1 is denoted by VA

L, we impose the following four
basic constraints for the possible form ofU ( )l l :

(1) Universality: any quantum state should be approximated
arbitrarily well by the designed HEA with a sufficiently
large number of layers L.

(2) Systematic improvability: VA
L should be included in VA

L+1

for any L, i.e., VA
L ⊆ VA

L+1. This guarantees that the
variational space is systematically expanded, and the
variational energy converges monotonically as L
increases, i.e., EA

L+1 ≤ EA
L. A simple sufficient condition

for the systematic improvability is that there exists a set of
parameters l such thatU I( )l l = .

(3) Size-consistency: since the exact wave function of a
compound system A + B consisting of two noninteracting
subsystems A and B is multiplicatively separable, i.e.,
|ΨA+B⟩ = |ΨA⟩|ΨB⟩, we require that VA

L ⊗ VB
L should be

included in VA+B
L for any L, i.e., VA

L ⊗ VB
L ⊆ VA+B

L (see
Figure 1b). As theHamiltonian of the composite system is
H H HA B A B= ++ , the constraint ensures that the varia-
tional energy EA+B

L of the composite system will not be
worse than the sum of the individually computed energies
EA
L + EB

L, i.e., EA+B
L ≤ EA

L + EB
L. This size-consistency

condition requires that for anyU ( )A l A, andU ( )B l B, , there

ex is ts a set of parameters l A B, + such that

U U U( ) ( ) ( )A B l A B A l A B l B, , ,=+ + .
(4) Noninteracting limit: in the limit that all the qubits are

noninteracting, the eigenstates are given by product

Figure 1. Heuristically designed HEA and physics-constrained HEA.
(a) RyRz full (EfficientSU2) ansatz. The Ry full ansatz can be obtained
by removing the columns of Rz gates, while the Ry linear ansatz can be
derived from the Ry full ansatz by further replacing the all-to-all CNOT
gates by nearest neighbor CNOT gates. (b) XYZ1F (gates in white)
and XYZ2F (gates in white and blue) ansaẗze. The dashed box indicates
a single repeating unit U( )l l , and all the parameters are omitted for
brevity. The two inclusion constraints VL ⊆ VL+1 and VA

L ⊗ VB
L ⊆ VA+B

L

for extending HEA in different directions of quantum circuits are
highlighted. The blue dashed line represents a partition of the whole
system into two subsystems A and B. (c) Example of particle-number
conserving ansatz introduced in refs 57 and 58.
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states. Thus, we require that for a goodHEA, L = 1 should
be sufficient for representing any product state, and hence
L > 1 is only required for entangled states.

If we make an analogy between HEA for quantum wave
function and NN for high-dimensional functions in classical
computing, then the requirement (1) plays a similar role as the
universal approximation theorem51,52 for NN. As shown in
Figure 1b, the two inclusion constraints (2) and (3) represent
the constraints for extending HEA in two different directions of
quantum circuits. To some extent, the systematic improvability
is analogous to the ResNet53 in classical NN architecture, which
uses NN to parametrize the residual and enables the use of very
deep NN in practice. In a similar spirit, we hope that an HEA
with systematic improvability can allow the use of very deep
quantum circuits. This turns out to be true as demonstrated
numerically in a later section. The size-consistency constraint
(3) introduced for HEA extends the notion of size-consistency/
size-extensivity in quantum chemistry54−56 for the qualification
and differentiation of many-body methods. A size-extensive
method such as the coupled cluster theory55 can provide
energies that grow linearly with the number of electrons in the
system. This is mandatory for the application of a many-body
method to large systems such as solids because it guarantees that
the quality of the energy will not deteriorate compared to that
for small systems. This concept is therefore also essential for the
scalability of the variational ansatz on quantum computers.
Some previously designed HEA are shown in Figure 1a. The

commonly used Ry and RyRz (EfficientSU2) ansaẗze with
different entangling blocks42 clearly fail to meet these important
requirements, in particular, constraints (2) and (3). It is obvious
that the Ry ansatz can only represent real wave functions,
whereas it is unclear whether the RyRz ansatz is universal.
Recently, a “cascade” ansatz is developed to satisfy the condition
U I( )l l = by adding the inverse of the CNOT gates in Ry ansatz
into the repeating unit.46 However, it fails to meet the
constraints (3) and (4). The HVA for model systems of the
form U ( ) el l k

Hl k k,= , where Hk is a component of the

Hamiltonian of the system H Hk k= , satisfies constraints (2)
and (3) but does not necessarily meet constraints (1) and (4),
which are requirements for general-purpose HEA. Similarly, the
separable-pair approximation (SPA) ansatz59,60 satisfies the size-
consistency and is hardware-efficient but not universal. Particle-
number symmetry-preserving ansaẗze have also been intro-
duced. A typical example is the ASWAP ansatz,57,58 as shown in
Figure 1c, where the following exchange-type two-qubit gate
A(θ, ϕ) is used

A( , )

1 0 0 0

0 cos e sin 0

0 e sin cos 0
0 0 0 1

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (2)

Since only |01⟩ and |10⟩ are allowed to mix, this gate preserves
the particle number of the input state with well-defined particle
number. It is universal only within the Hilbert space with fixed
number of electrons, but fails to satisfy the constraints (2) and
(3), because the identity operator cannot be achieved by A(θ,
ϕ). The ansatz using the following hop gate61

h( )

1 0 0 0
0 cos sin 0

0 sin cos 0

0 0 0 1

=

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (3)

also fails to satisfy the systematically improvability and size-
consistency due to the exactly same problem. In summary, to the
best of our knowledge, an HEA satisfying all of these constraints
has not been proposed before. Our goal is to design an HEA
satisfying these constraints and hence it will not be particle
number conserving in order to be universal, which is
advantageous in applications such as computing Green’s
functions.62,63 For applications where the particle number is
conserved, such as computing the ground state of molecules, we
can apply penalties to enforce the correct particle numbers if
necessary (vide post). Finally, we emphasize that apart from
these theoretical constraints, since most of existing quantum
devices have very restricted qubit connectivity, an additional
important hardware constraint is that the building block U ( )l l
should be easily implemented on quantum devices with
restricted connectivity.
Physics-Constrained HEA. The above requirements still

leave a lot of degree of freedom in the design of HEA. Here, we
propose one possible HEA that satisfies these basic require-
ments, referred to as physics-constrained HEA, and only
requires linear qubit connectivity. It should be pointed out
that such a realization of physics-constrained HEA is not unique,
and other realizations are certainly possible, which is a subject of
future investigations. Our starting point is the wave function
given by a product of exponential of Pauli operators

e ... e eP P

l

L
P

0
1

0
L L l l1 1| = | |

= (4)

which is the form for the UCC-type ansatz. A simple observation
is that if one can choose all possible Pl ∈ {I, X, Y, Z}⊗N, this form
of Ul(θl) ( e Pl l= ) is universal.64,65 It is also systematically
improvable because the choice θl = 0 gives an identity operator.
However, it does not satisfy constraints (3) and (4). Thus, if
each layer of HEA has the ability to represent any e Pl l with Pl ∈
{I, X, Y, Z}⊗N, the resulting ansatz will automatically satisfy
constraints (1) and (2), and we only need to modify it to satisfy
constraints (3) and (4). The fact that any e Pl l can be
represented by a quantum circuit with CNOT “staircases”64

(see Figure 2a,b) motivates us to design U ( )l l with a similar
structure (see Figure 2c), where the forms of the single-qubit
gates U1 and two-qubit gates U2 remain to be specified. We find
the following sufficient condition for representing any e Pl l by
the circuit block in Figure 2c:
Theorem 1 If U2 include gates in {I, CNOT, SWAP or

iSWAP}, then the circuit block in Figure 2c can represent any e Pl l

with Pl ∈ {I, Z}⊗N. Furthermore, if U1 include gates in {I, Rx(π/2),
Ry(−π/2) orH}, then the circuit block can represent any e Pl l with
Pl ∈ {I, X, Y, Z}⊗N.
The proof of Theorem 1 is quite straightforward.We only give

two concrete examples in Figure 2, arising from the double
excitation a0†a2†a4a5 and the single excitation a1†a4 in UCC,
respectively. It can be easily verified that e Z Z Z Z Z0 1 2 4 5 in Figure 2a
is given by XYZ1F in Figure 2c with U2,k = CNOT for k ∈ {0, 1,
3, 4} and U2,2 = SWAP/iSWAP, while e Z Z Z Z1 2 3 4 in Figure 2b is
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given by U2,0 = I, U2,k = CNOT for k ∈ {1, 2, 3}, and U2,4 =
SWAP/iSWAP. Other e Pl can be represented by a similar
recipe. The role of SWAP can be replaced by iSWAP, which is
easier to implement on some quantum computing platforms,
such as superconducting quantum devices.66

There are still infinitely many ways to parametrize U1 and U2
that satisfy this sufficient condition, since a general single-qubit
(two-qubit) gate can be described by three (15) parameters, and
at most three CNOT gates are needed for general two-qubit
gates.67,68 To minimize the number of parameters per circuit
block and reduce the number of native two-qubit gates in U2,
here we present a parametrization of U2 with two parameters

U I R U I R( , ) ( /2) ( , ) ( /2)y y2 fSim= [ ] [ ]
(5)

using the fSim gate UfSim(θ, ϕ) native on some superconducting
devices69

U ( , )

1 0 0 0
0 cos sin 0
0 sin cos 0

0 0 0 e

fSim =

Ä

Ç

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ

É

Ö

ÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑÑ (6)

which yields

U I U U(0, 0) , ( /2, 0) iSWAP, (0, ) CNOT2 2 2= = =
(7)

A simple choice for the single-qubit gates U1 to satisfy the
sufficient condition is

U R R( , ) ( ) ( )x y1 = (8)

Equations 5 and 8 completely define a HEA, which can
implement an exponential of any Pauli operator by appropriate
choice of parameters. We will refer to it as XYZ1F in the
following context; see Figure 2c, as an abbreviation for the
combination of the three types of single-qubit rotation gates
used and the two-qubit gates involving fSim gates.
It is easy to see that the XYZ1F ansatz, however, does not yet

satisfy constraints (3) and (4). Fortunately, by simply replacing
the single Rz gate in the middle by a layer of Rz gate, we can
resolve this problem and obtain the final physics-constrained
HEA, denoted by XYZ2F in Figure 1b (with additional gates in
blue). The size-consistency of XYZ2F can be seen as follows:
suppose the subsystems A and B contain the first two and the
remaining two qubits, respectively, then the wave function
|ΨA

L⟩|ΨB
L⟩ formed by a direct product of the two XYZ2F wave

functions can be represented by an XYZ2F ansatz for the
composite system with U2,1 = I (see Figure 1b). Therefore, the
ability ofU2 to become identity is essential from a size-consistent
perspective, which is missing in other HEA shown in Figure 1a,c.
It can be verified that the constraint (4) is also satisfied by simply
setting all U2 to identity, such that for the nth qubit, the circuit
block gives a universal single-qubit gate64

U R R R R R( ) ( ) ( ) ( ) ( )x y z y x0 1 2 1 0= † †
(9)

Another advantage of the size-consistent modification is that
terms such as e X X X Z Z Y( )1 0 1 2 2 3 4 3 5+ + can be implemented by a
single layer in XYZ2F. In contrast, e e eX X X Z Z Y1 0 1 2 2 3 4 3 5 needs
to be implemented by three consecutive blocks in XYZ1F. This
will greatly reduce the number of layers required to represent
certain states, as will be shown numerically for the ground state
of the Heisenberg model and some typical molecules.
In summary, the constructed XYZ2F ansatz satisfies all four

fundamental constraints. The number of parameters in one layer
of XYZ2F is (5N − 2), where 3N and 2(N − 1) are for single-
qubit and two-qubit gates, respectively. Comparing the
exponential e Pl l with Pl ∈ {I, X, Y, Z}⊗N, it is seen that all the
4N discrete choices of Pl are now embedded into a continuous
space of operators U ( )l l specified by O(N) parameters.
Therefore, it can be viewed as an adaptive ansatz, where the
operator pool contains all 4NPauli operators rather than given by
UCCSD as in other adaptive methods.35−38 In Table 1, we
compare different HEA in terms of the numbers of parameters
Nparam, two-qubit gates N2, single-qubit gates N1, and the circuit
depth D as a function of layer L and number of qubits N. The
number of parameters in all of them scales as O(NL). One
disadvantage of XYZ1F and XYZ2F is that the circuit depths of

Figure 2. Examples for Theorem 1 with six qubits. (a,b) Quantum
circuits appeared in UCC arising from the double excitation a0†a2†a4a5
and the single excitation a1†a4, respectively; (c) XYZ1F circuit. Both
(a,b) can be represented by (c) by appropriately choosing single-qubit
gates U1,k from {I, Rx(π/2), Ry(−π/2) or H} and two-qubit gates U2,k
from {I, CNOT, SWAP or iSWAP}.

Table 1. Comparison of Different HEA in Terms of the
Numbers of Parameters Nparam, Two-Qubit Gates N2, Single-
Qubit GatesN1, and the Circuit DepthD as a Function of the
Layer L and the Number of Qubits Na

ansatz Nparam N2 N1 D (N ≥ 3, L ≥ 1)

Ry linear N(L + 1) (N − 1)L N(L + 1) N + 3L − 2
Ry full N(L + 1) N(N − 1)L/2 N(L + 1) NL + N + L − 2
RyRz full 2N(L + 1) N(N − 1)L/2 2N(L + 1) NL + N + 2L − 2
ASWAP 2(N − 1)L (N − 1)L 0 2L
XYZ1F (4N − 1)L 2(N − 1)L (8N − 3)L (4N + 3)L
XYZ2F (5N − 2)L 2(N − 1)L (9N − 4)L (4N + 3)L

aWhen counting N2 and D, we assume that the ASWAP and fSim
gates are native gates.
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XYZ1F and XYZ2F are larger than those of other HEA due to
the use of the staircase structure. In principle, other low-depth
architectures such as the brickwall structure can be used in the
construction of physics-constrainedHEA.We are exploring such
possibility, and the results will be reported elsewhere.

Layerwise Optimization Algorithm. To take full
advantage of the systematic improvability of XYZ1F and
XYZ2F, the parameters in HEA are optimized in a layerwise
way using Algorithm 1. This is different from optimization with
random initialization for all parameters, which has been shown

Figure 3.Variance of energy gradients for the one-dimensional Heisenbergmodel. (a,b) Variances of energy gradients for the first parameter in the first
layer θ1,1 and that in the L-th layer θL,1 are computed with random initialization of all parameters for 500 times. For all the HEA, an exponential
vanishing of gradients with respect to the number of qubitsN and the number of layers L are observed, consistent with the conclusions in ref 45. (c,d)
Instead of random initialization, the parameters for the previous L − 1 layers are the optimized parameters, while those for the L-th layer are initialized
randomly for 500 times. Compared with random initialization, the layerwise optimization alleviates the barren plateau problem.

Table 2. Size-Consistency Test: Ground-State Energy per Site eNL and Infidelities (1 − FNL with FN
L

N
L

N
2= | | * | ) Obtained by

Different HEA with L = 2 and L = 4 for a Composite Heisenberg Model (Denoted by 6 + 6), Which Consists of Two
Noninteracting Subsystems with Six Sitesa

system Ry linear Ry full RyRz full ASWAP XYZ2F

e6L=2 −0.78333 −0.78333 −0.80606 −0.80273 −0.83054
(0.04786) (0.04786) (0.02514) (0.02846) (0.00065)

e6+6L=2 −0.52002 −0.51368 −0.64791 −0.52267 −0.83054
(0.31118) (0.31751) (0.18328) (0.30853) (0.00065)

e6L=4 −0.82988 −0.82988 −0.83089 −0.83119 −0.83119
(0.00132) (0.00132) (0.00030) (0.00000) (0.00000)

e6+6L=4 −0.33247 −0.35020 −0.53154 −0.63073 −0.83119
(0.49873) (0.48099) (0.29966) (0.20047) (0.00000)

F1 L
6

2= 0.17623 0.17623 0.03743 0.05260 0.00085

F1 L
6 6

2
+
= 0.77773 1.00000 1.00000 0.95358 0.00170

F1 L
6

4= 0.00205 0.00205 0.00037 0.00000 0.00000

F1 L
6 6

4
+
= 0.93368 1.00000 0.93196 0.79871 0.00000

aThe parameters of the total system are taken from the optimized parameters of the subsystems. Errors with respect to the exact eN* obtained from
exact diagonalization are shown in parentheses. Only XYZ2F satisfies e6+6L = e6L, while other HEA are not size-consistent.
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to easily suffer from the problems of low-quality local minima
and barren plateaus.45 Our algorithm has two key features. First,
we retain the optimized parameters from the previous step as the
initial guess for the L − 1 layers in the current step. Second, we
generated n (about 10) sets of random parameters with different
step sizes for the L-th layer. Each set of parameters L is obtained

from L
u

umax i i
= | | , where u are random numbers in [−1, 1] and

δ is a predefined step size 0
k

2
2 0

5

k{ } { }
=

. This guarantees

that the optimized energy decreases monotonically with respect
to L for XYZ1F and XYZ2F. For consistency, the layerwise
optimization method is also employed in calculations using
other HEA. We implement all the HEA using MindQuantum.70

Numerical optimization in VQE employed the Broyden−
Fletcher−Goldfarb−Shanno (BFGS) method implemented in
Scipy.71 As shown in the Supporting Information, during the
optimization, the decrease of the energy is fast at the beginning
of iterations and then slows down. Thus, we set the maximal
number of iterations to be 3000 for a given layer.

Figure 3 displays the variance of energy gradients for the 1D
Heisenberg model (see the next section). We observe the
exponential vanishing of gradients with respect to the number of
qubits N and the number of layers L with random initialization,
consistent with the conclusions in ref 45. In contrast, the

layerwise optimization alleviates the barren plateau problem, in
particular for XYZ2F.

■ RESULTS
Heisenberg Model. We first use the one-dimensional

Heisenberg model with open boundary condition, whose
Hamiltonian is H J n

N
n n

1
2 1

1
1= ·= + , to study the effective-

ness of the constructed HEA. In Table 2, we perform a size-
consistent test54,56 for different HEA by applying them to a
composite Heisenberg model (denoted by 6 + 6) consisting of
two noninteracting subsystems with six sites. The parameters in
the wave function of the composite system are taken from the
optimized parameters for the subsystem. If an ansatz is size-
consistent, then the ground-state energy per site eNL should be the
same for the whole system and the subsystem, i.e. e6+6L = e6L for
any L. Notably, only XYZ2F satisfies this condition, while other
HEA violates it significantly. The additional entangling gates
between subsystems in other HEA severely degrade the quality
of the approximation in the total system, as can be seen from the
significant increase of infidelity (1 − FN

L with FN
L

N
L

N
2= | | * | ,

where |ΨN*⟩ is the exact wave function) in Table 2. In particular,
the additional CNOT gates in the Ry full ansatz (see Figure 1a)
make the fidelity between the approximate state and the ground
state almost vanish. On the contrary, the infidelity for XYZ2F is
well-controlled, that is, if the fidelity F6L is 1− ϵ, where ϵ is a small
number (0.00085 for L = 2 in Table 2), then the fidelity for the
total system is (1 − ϵ)2, and thus the infidelity 1 − F6+6L is about
2ϵ. Therefore, an interesting topic for future studies is to use
parameters optimized from small systems as an initial guess of
the XYZ2F for large systems.
Figure 4 shows the convergence of the ground-state energy

per site eNL obtained by different HEA for antiferromagnetic
Heisenberg models as a function of the number of layers L
starting from a Neél state as reference |Φ0⟩. We find that both

Figure 4.Convergence of the ground-state energy per site eNL obtained by different HEA (a: Ry linear, b: Ry full, c: RyRz full, d: ASWAP, e: XYZ1F, and f:
XYZ2F) as a function of the number of layers L for one-dimensional antiferromagnetic Heisenberg models (J = −1) with different number of sitesN.
The exact values eN* are obtained from exact diagonalizations. While both XYZ1F and XYZ2F are systematically improvable, the size-consistency of
XYZ2F makes it superior to XYZ1F. Other HEA do not converge monotonically and become increasingly difficult to achieve a target accuracy as the
system size increases (except for ASWAP). The shaded regions represent the region within the chemical accuracy (1 mH).
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XYZ1F and XYZ2F are systematically improvable as expected,
and the effect of the size-consistent modification in XYZ2F is
dramatic, which significantly reduces the number of layers
needed to reach a certain accuracy. In contrast, other HEA do

not converge monotonically and become increasingly difficult to
converge as the system sizeN increases (except for ASWAP). As
shown in Figure 4, the oscillatory behavior reveals a severe
problem of these HEA in practical applications; that is, even if

Figure 5.Number of variational parametersNparam (a) and the number of two-qubit gatesN2 (b) required to reach 1 milli-Hartree as a function of the

number of sites N for one-dimensional antiferromagnetic Heisenberg models (J = −1). The dimension of the Hilbert space( )N
N/2 for different N is

shown for comparison. The fitted scaling O(Nb) is shown by dashed lines.

Table 3. Size-Consistency Test for a Composite System Composed of Two H4 Chains (RH−H = 1.5 Å) Separated by a Distance of
100 Åa

system CCSD (CMO) UCCSD (CMO) Ry linear (OAO) Ry full (OAO) RyRz full (OAO) ASWAP (OAO) XYZ2F (OAO)

EHd4
−1.99762
(−0.00147)

−1.99460
(0.00155)

−1.97672
(0.01943)

−1.99045
(0.00570)

−0.92429
(1.07186)

−1.99113
(0.00502)

−1.99560
(0.00055)

EHd4−Hd4
−3.99525
(−0.00295)

−3.98918
(0.00312)

−2.52810
(1.46420)

−2.36808
(1.62422)

−1.85371
(2.13859)

−3.48508
(0.50722)

−3.99119
(0.00111)

EHd4−Hd4
−

2EHd4

0 2.3 × 10−5 1.43 1.61 −5.1 × 10−3 5.0 × 10−1 0

aThe ground-state energies for the monomer and the entire system are obtained by classical coupled cluster singles and doubles (CCSD) and
single-step Trotterized unitary CCSD (UCCSD) using canonical molecular orbitals (CMO). For HEA, the results are obtained with L = 6 using
orthonormalized atomic orbitals (OAO). The optimized parameters for H4 are taken as the parameters for the H4−H4 ladder. Errors with respect
to the FCI are shown in parentheses.

Figure 6. Ground-state energy convergence with respect to exact diagonalization results as a function of the number of layers L for molecules: (a−c)
hydrogen chains (H4, H6, andH8) with interatomic distanceRH−H = 1.5 Å; (d) LiH (RLi−H = 2.0 Å); (e)H2O (RO−H = 2.0 Å and θH−O−H = 104.5°); and
(f) N2 (RN−N = 2.0 Å). For H2O, the O 1s orbital is frozen, while the N 1s and N 2s orbitals are frozen for N2. The black dashed lines represent UCCSD
results, while the shaded regions represent the region within the chemical accuracy (1 mH).
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they have reached a certain accuracy with L layers, the accuracy
with L + 1 layers may be worse. The comparison with XYZ1F/
XYZ2F suggests that it is the violation of constraints (2) and (3)
that causes these heuristically designed HEA to perform poorly
as N increases.
In Figure 5a, we display the number of variational parameters

Nparam to reach 1 mH as a function of the number of sites N,

compared against the dimension of the Hilbert space( )N
N/2 for

different N. It is seen that for this system, the number of
variational parameters to reach 1milli-Hartree scales asO(N1.98)
for XYZ2F. The scaling for XYZ1F and ASWAP are quite
similar, but the ASWAP has a much smaller prefactor. Figure 5b
shows the scaling of the number of two-qubit gates N2 required
to reach 1milli-Hartree for differentN. It is seen that XYZ2F has
the lowest scaling O(N2.17), albeit with a larger prefactor than
ASWAP. Therefore, future optimization of the layout may
further lead to a more economic physics-constrained HEA.
Molecules. Next we examined the performance of the

constructed HEA for realistic systems. For molecules, the
molecular integrals were generated using the PySCF package72

in a minimal STO-3G basis. The Jordan−Wigner Fermion-to-
qubit transformation73 was carried out using OpenFermion,74

where occupation number vectors (ONVs) for Fermions
n n n n n n... k k0 0 1 1| (n ∈ {0, 1} and the symbol i ̅ represents i-th
β spin−orbita l) is mapped to ONVs for qubits
|q0q1q2q3...q2kq2k+1⟩.
Table 3 shows the size-consistency test for a composite

hydrogen ladder composed of two H4 chain (RH−H = 1.5 Å)
separated by a distance of 100 Å. It is well-known that classical
spin-restricted coupled cluster singles and doubles (CCSD)

method is size-consistent/extensive in this case. However, it is
seen that the commonly used Trotterized unitary CCSD
(UCCSD) using canonical molecular orbitals (CMO) has a
small size-consistency error. Here, we consider only a single
Trotter step. The Trotterization makes UCCSD lose the
property of orbital invariance. Since the CMO of the H4 ladder,
which is delocalized among all hydrogen, is different from that of
the H4 monomer, the UCCSD wave function cannot be exactly
factorized into a product of two wave functions. The Trotterized
UCCSD can become size-consistent only with localized
molecular orbitals with a proper ordering of qubits. Similarly,
we can only expect size-consistency for HEA using localized
orbitals. Table 3 shows the results obtained with L = 6 using
orthonormalized atomic orbitals (OAO). It is clear that only
XYZ2F is size-consistent in this case.
Figure 6 shows the comparison of different HEA for the

convergence of ground-state energies as a function of the
number of layers L for hydrogen chains (H4, H6, and H8), LiH,
H2O, and N2, which were commonly used to benchmark the
performance of quantum computing techniques.33,42,46,75,76 For
the stretched hydrogen chains, the OAO were used due to the
faster convergence and the reference state was a Neél state, e.g.,
|Φ0⟩ = |10011001⟩ for H4. As the number of hydrogen increases,
the number of Slater determinants with large coefficients in the
expansion of the exact ground state increases significantly. As
shown in Figure 6, only XYZ2F converges monotonically to
chemical accuracy, while other HEA perform poorly for H6 and
H8. The number of layers needed to achieve chemical accuracy
increases roughly linearly with the system size for XYZ2F.
For LiH, H2O, and N2, all simulated with 12 qubits using the

restricted Hartree−Fock (RHF) orbitals, the convergence

Figure 7. Two-dimensional ladder H3−H3 where RH−H = 1.5 Å within each monomer. (a) Potential energy curve described by full configuration
interaction (FCI) and unitary CCSD (UCCSD). Note that the performance of UCCSD deteriorates as d exceeds 1.3 Å. (b−d) Convergence of
different HEA for the ground-state energy at three representative distances (0.7, 1.5, and 3.0 Å). The black dashed lines represent UCCSD results. The
error of UCCSD at d = 0.7 Å is below 1 micro-Hartree.
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behavior is quite different, reflecting the very different electronic
structures. For LiH at RLi−H = 2.0 Å, the exact ground state is
dominated by the Hartree−Fock configuration (about 95%),
and thus XYZ2F quickly reaches chemical accuracy with L = 3.
For H2O and N2 at stretched geometries upon dissociation,
which are typical examples of strong electron correlations in
quantum chemistry, the convergence is slower. In the calculation
of H2O, we added a penalty term for preserving the particle
number, viz. H H N n N n( ) ( )2 2= + + with β =
1.0. In the calculations of N2, we further added a penalty for the
total spin, viz. Ĥ′ = Ĥ + β(N̂↑ − n↑)2 + β(N̂↓ − n↓)2 + βŜ+Ŝ−with
β = 1.0. For the ASWAP ansatz, a larger β = 3.0 is used;
otherwise, it will not converge to the ground state. As shown in
Figure 6, the number of layers required for XYZ2F to reach
chemical accuracy is 11 and 27, respectively. For the most
challenging molecule N2, we find that other HEA are difficult to
converge to chemical accuracy.
Finally, we test the performance of HEA on a more

challenging two-dimensional system, a H3−H3 ladder (see
Figure 7). We should mention that Ry linear, ASWAP, XYZ1F,
and XYZ2F are designed to be one-dimensional, and we are
working on the two-dimensional extensions. But we can examine
their performance on a two-dimensional system. The con-
vergence of different HEA for the ground-state energy at three
representative distances (0.7, 1.5, and 3.0 Å) are shown in Figure
7. Both in the equilibrium (d = 0.7 Å) and in the dissociation
region (d = 3.0 Å), XYZ2F converge to the chemical accuracy
easily, because the systems can be viewed as close to three
hydrogen molecules and two H3, respectively. At d = 1.5 Å,
which equals RH−H within the monomer, the system is most
difficult.We find that XYZ2F require about 37 layers to converge
to the chemical accuracy, while XYZ1F and ASWAP converge
much more slowly. Other HEA completely fail. It is seen that
ensuring the universality, systematical improvability, and size-
consistency is important for the good performance of HEA even
in this challenging case. Therefore, we expect that by extending
the physics-constrained HEA to two-dimensional systems,
better performance can be obtained.

■ CONCLUSIONS
In this work, we introduced a new way to design HEA by
satisfying fundamental constraints, inspired by the physics-
constrained way to design nonempirical XC functionals in
DFT.48 The developed physics-constrained HEA XYZ2F is
superior to other heuristically designed HEA in terms of both
accuracy and scalability. In particular, numerical tests show the
promise of XYZ2F for challenging realistic molecules with
strong electron correlation. The better scalability of XYZ2F is
attributed to the satisfaction of the systematic improvability and
size-consistency. Our results suggest that incorporating physical
constraints into the design of HEA is a promising path toward
designing efficient variational ansaẗze for solving many-body
problems on quantum computers.
One disadvantage of XYZ2F is its high circuit depth due to the

use of the staircase structure. This stems from the requirement
that the circuit block can represent any exponential of a Pauli
operator, which is a sufficient condition for the universality.
However, this is not a necessary condition; other conditions for
the universality can be imposed, which may lead to lower circuit
depth. Another very interesting direction is that while we
consider only one-dimensional HEA in this work, the concepts
of physics-constrained HEA can be extended to construct HEA

for higher dimensions. We are exploring these directions. It is
conceivable that this work will inspire other realizations of HEA
that satisfy these basic constraints, probably with more
interesting properties such as fewer parameters, faster
convergence, better trainability, and more versatile qubit
connectivity.
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